Synergistic effects of alpha-toxin and perfringolysin O in Clostridium perfringens-mediated gas gangrene

Infect Immun. 2001 Dec;69(12):7904-10. doi: 10.1128/IAI.69.12.7904-7910.2001.

Abstract

To examine the synergistic effects of alpha-toxin and perfringolysin O in clostridial myonecrosis, homologous recombination was used to construct an alpha-toxin deficient derivative of a perfringolysin O mutant of Clostridium perfringens. The subsequent strain was complemented with separate plasmids that carried the alpha-toxin structural gene (plc), the perfringolysin O gene (pfoA), or both toxin genes, and the resultant isogenic strains were examined in a mouse myonecrosis model. Synergistic effects were clearly observed in these experiments. Infection with the control strain, which did not produce either toxin, resulted in very minimal gross pathological changes, whereas the isogenic strain that was reconstituted for both toxins produced a pathology that was clearly more severe than when alpha-toxin alone was reconstituted. These changes were most apparent in the rapid spread of the disease, the gross pathology of the footpad and in the rate at which the mice had to be euthanatized for ethical reasons. Elimination of both alpha-toxin and perfringolysin O production removed most of the histopathological features typical of clostridial myonecrosis. These effects were restored when the mutant was complemented with the alpha-toxin structural gene, but reconstituting only perfringolysin O activity produced vastly different results, with regions of coagulative necrosis, apparently enhanced by vascular disruption, being observed. Reconstitution of both alpha-toxin and perfringolysin O activity produced histopathology most similar to that observed with the alpha-toxin reconstituted strain. The spreading of myonecrosis was very rapid in these tissues, and coagulative necrosis appeared to be restricted to the lumen of the blood vessels. The results of these virulence experiments clearly support the hypothesis that alpha-toxin and perfringolysin O have a synergistic effect in the pathology of gas gangrene.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bacterial Toxins / genetics
  • Bacterial Toxins / toxicity*
  • Calcium-Binding Proteins*
  • Clostridium perfringens / pathogenicity*
  • Drug Synergism
  • Gas Gangrene / etiology*
  • Gas Gangrene / pathology
  • Hemolysin Proteins
  • Hindlimb
  • Mice
  • Mice, Inbred BALB C
  • Muscle, Skeletal / pathology
  • Mutation
  • Necrosis
  • Type C Phospholipases / genetics
  • Type C Phospholipases / toxicity*

Substances

  • Bacterial Toxins
  • Calcium-Binding Proteins
  • Hemolysin Proteins
  • Clostridium perfringens theta-toxin
  • Type C Phospholipases
  • alpha toxin, Clostridium perfringens