Post-training cyclooxygenase-2 (COX-2) inhibition impairs memory consolidation

Learn Mem. 2002 Jan-Feb;9(1):41-7. doi: 10.1101/lm.43602.

Abstract

Evidence indicates that prostanoids, such as prostaglandins, play a regulatory role in several forms of neural plasticity, including long-term potentiation, a cellular model for certain forms of learning and memory. In these experiments, the significance of the COX isoforms cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) in post-training memory processes was assessed. Adult male Long-Evans rats underwent an eight-trial (30-sec intertrial interval) training session on a hippocampus-dependent (hidden platform) or dorsal striatal-dependent (visible platform) tasks in a water maze. After the completion of training, rats received an intraperitoneal injection of the nonselective COX inhibitor indomethacin, the COX-1-specific inhibitor piroxicam, the COX-2-specific inhibitor N-[2-cyclohexyloxy-4-nitrophenyl]-methanesulfonamide (NS-398), vehicle (45% 2-hydroxypropyl-beta-cyclodextrin in distilled water), or saline. On a two-trial retention test session 24 h later, latency to mount the escape platform was used as a measure of memory. In the hidden platform task, the retention test escape latencies of rats administered indomethacin (5 and 10 mg/kg) or NS-398 (2 and 5 mg/kg) were significantly higher than those of vehicle-treated rats, indicating an impairment in retention. Injections of indomethacin or NS-398 that were delayed 2 h post-training had no effect on retention. Post-training indomethacin or NS-398 had no influence on retention of the visible platform version of the water maze at any of the doses administered. Furthermore, selective inhibition of COX-1 via post-training piroxicam administration had no effect on retention of either task. These findings indicate that COX-2 is a required biochemical component mediating the consolidation of hippocampal-dependent memory.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cyclooxygenase 1
  • Cyclooxygenase 2
  • Cyclooxygenase 2 Inhibitors
  • Cyclooxygenase Inhibitors / pharmacology
  • Indomethacin / pharmacology
  • Isoenzymes / antagonists & inhibitors
  • Isoenzymes / physiology*
  • Learning / drug effects
  • Learning / physiology
  • Male
  • Membrane Proteins
  • Memory / classification
  • Memory / drug effects
  • Memory / physiology*
  • Nitrobenzenes / pharmacology
  • Piroxicam / pharmacology
  • Prostaglandin-Endoperoxide Synthases / physiology*
  • Rats
  • Rats, Long-Evans
  • Sulfonamides / pharmacology

Substances

  • Cyclooxygenase 2 Inhibitors
  • Cyclooxygenase Inhibitors
  • Isoenzymes
  • Membrane Proteins
  • Nitrobenzenes
  • Sulfonamides
  • N-(2-cyclohexyloxy-4-nitrophenyl)methanesulfonamide
  • Piroxicam
  • Cyclooxygenase 1
  • Cyclooxygenase 2
  • Prostaglandin-Endoperoxide Synthases
  • Ptgs1 protein, rat
  • Indomethacin