AP-1A and AP-3A lysosomal sorting functions

Traffic. 2002 Oct;3(10):752-61. doi: 10.1034/j.1600-0854.2002.31007.x.

Abstract

Heterotetrameric adaptor-protein complexes AP-1A and AP-3A mediate protein sorting in post-Golgi vesicular transport. AP-1A and AP-3A have been localized to the trans-Golgi network, indicating a function in protein sorting at this compartment. AP-3A appears to mediate trans-Golgi network-to-lysosome and also endosome-to-lysosome protein sorting. AP-1A is thought to be required for both trans-Golgi network-to-endosome transport and endosome-to-trans-Golgi network transport. However, the recent discovery of a role for monomeric GGA (Golgi localized gamma-ear containing, ARF binding protein) adaptor proteins in trans-Golgi network to endosome protein transport has brought into question the long-discussed trans-Golgi network-to-endosome sorting function of AP-1A. Murine cytomegalovirus gp48 contains an unusual di-leucine-based lysosome sorting signal motif and mediates lysosomal sorting of gp48/major histocompatibility complex class I receptor complexes, preventing exposure of major histocompatibility complex class I at the plasma membrane. We analyzed lysosomal sorting of gp48/major histocompatibility complex class I receptor complexes in cell lines deficient for AP-1A, AP-3A and both, to determine their sorting functions. We find that AP1-A and AP3-A mediate distinct and sequential steps in the lysosomal sorting. Both sorting functions are required to prevent MHC class I exposure at the plasma membrane at steady-state.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Cell Line
  • Cell Membrane / metabolism
  • Golgi Apparatus / metabolism
  • Histocompatibility Antigens Class I / chemistry
  • Histocompatibility Antigens Class I / metabolism
  • Hydrolysis
  • Lysosomes / metabolism*
  • Mice
  • Microscopy, Fluorescence
  • Molecular Sequence Data

Substances

  • Histocompatibility Antigens Class I