The wave packet: an action potential for the 21st century

J Integr Neurosci. 2003 Jun;2(1):3-30. doi: 10.1142/s0219635203000214.

Abstract

Sensing and perceiving involve enormous numbers of widely distributed dendritic and action potentials in cortex, before, during and after stimulus arrival but with differing spatiotemporal patterns. Stimulus-activated receptors drive cortical neurons directly (olfactory) or indirectly through thalamocortical relays. The driven activity induces hemisphere-wide, self-organized patterns of neural activity called wave packets. Three levels of brain function are hypothesized to mediate transition from sensation and perception. Microscopic activity expressed by action potentials is sensory. Macroscopic activity of the whole forebrain expressed by behavior is perceptual. Mesoscopic activity bridges the gap by the formation of wave packets. They form when sensory input destabilizes the primary receiving areas by local state transitions. The sensory-driven action potentials condense into mesoscopic wave packets like molecules forming raindrops from vapor. The condensation disks sustain 2D spatial patterns of phase and amplitude of carrier waves in the beta and gamma EEG. The AM patterns correlate not with features but with the context and value of sensory stimuli for the subjects, in a word, their meaning. The wave packets from all sensory areas are broadly transmitted through the forebrain. They induce the formation of macroscopic patterns that coalesce like scintillating pools over much and perhaps all of each hemisphere. The prediction is made for clinical testing that wave packets are precursor to states of awareness. They are not by themselves accessible to experience, as may be the macroscopic states initiated by global state transitions.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Cerebral Cortex / physiology*
  • Electroencephalography*
  • Humans
  • Models, Neurological*
  • Scalp
  • Synaptic Transmission