Heterogeneity of natural killer cell subsets in NK-1.1+ and NK-1.1- inbred mouse strains and their progeny

Cell Immunol. 1992 Apr 15;141(1):148-60. doi: 10.1016/0008-8749(92)90134-b.

Abstract

The 4LO3311 monoclonal antibody, a new NK-specific reagent recently produced in our laboratory, reacts with spleen cells of 11 mouse strains, most of which do not express the NK-1.1 alloantigen recognized by the PK136 mAb. Among positive strains, the susceptibility of spleen cells to the complement-dependent NK-inhibiting activity of the 4LO3311 mAb was variable but independent of the initial NK cell activity level of cells tested. This property was furthermore not modified after poly(I:C) stimulation. The susceptibility of spleen cells to the in vitro 4LO3311 mAb plus complement treatment is however influenced by the absolute number of 4LO3311+ cells as well as by the density of the corresponding alloantigen at the cell surface. Moreover, it was established that the strain-related variations observed also depended upon the relative size of the 4LO3311 cell subset within the lytic NK cell population. Indeed, when C3H (NK-1.1-4LO3311+) mice were inoculated with the 4LO3311 mAb, the lytic activity of their spleen cells was almost unaltered but 4LO3311-reactive cells were no longer detected in the spleen of treated animals and remaining NK cells were totally resistant to the in vitro 4LO3311 mAb plus complement treatment. These findings indicate that the 4LO3311 mAb identifies a subset rather than all NK cells, even in a NK-1.1- strain. Since a NK-1.1-unreactive cell subset was identified in NZB (NK-1.1+4LO3311-) mice inoculated with the PK136 mAb, the NK-1.1+ cell population is not necessarily responsible for all the splenic NK cell activity in all NK-1.1+ strains. In B6C3F1 hybrid mice, a relatively large subset of NK-1.1-4LO3311- cells was found in addition to those expressing the NK-1.1, the 4LO3311 alloantigen, or both. According to these results, NK cell heterogeneity should thus be taken as an evolving concept whose resolution appears more and more complex with the identification of new NK-specific reagents.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antibodies, Monoclonal / administration & dosage
  • Antibodies, Monoclonal / immunology*
  • Flow Cytometry
  • Immunophenotyping
  • Killer Cells, Natural / immunology*
  • Lymphocyte Subsets / immunology*
  • Mice
  • Mice, Inbred BALB C
  • Mice, Inbred C3H
  • Mice, Inbred C57BL
  • Mice, Inbred DBA
  • Spleen / cytology
  • Spleen / immunology

Substances

  • Antibodies, Monoclonal