TGF-beta receptor function in the endothelium

Cardiovasc Res. 2005 Feb 15;65(3):599-608. doi: 10.1016/j.cardiores.2004.10.036.

Abstract

Genetic studies in mice and humans have revealed the pivotal role of transforming growth factor-beta (TGF-beta) signaling during angiogenesis. Mice deficient for various TGF-beta signaling components present an embryonic lethality due to vascular defects. In patients, mutations in the TGF-beta type I receptor ALK1 or in the accessory TGF-beta receptor endoglin are linked to an autosomal dominant disorder of vascular dysplasia termed Hereditary Haemorrhagic Telangiectasia (HHT). It has puzzled researchers for years to explain the effects of TGF-beta being a stimulator and an inhibitor of angiogenesis in vitro and in vivo. Recently, a model has been proposed in which TGF-beta by binding to the TGF-beta type II receptor can activate two distinct type I receptors in endothelial cells (ECs), i.e., the EC-restricted ALK1 and the broadly expressed ALK-5, which have opposite effects on ECs behavior. ALK1 via Smad1/5 transcription factors stimulates EC proliferation and migration, whereas ALK5 via Smad2/3 inhibits EC proliferation and migration. Here, the new findings are presented concerning the molecular mechanisms that take place in ECs to precisely regulate and even switch between TGF-beta-induced biological responses. In particular, the role of the accessory TGF-beta receptor endoglin in the regulation of EC behavior is addressed and new insights are discussed concerning the possible mechanisms that are implicated in the development of HHT.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Endothelium, Vascular / physiology*
  • Humans
  • Mice
  • Neovascularization, Physiologic / physiology
  • Receptors, Transforming Growth Factor beta / physiology*
  • Signal Transduction / physiology
  • Telangiectasia, Hereditary Hemorrhagic / physiopathology
  • Transforming Growth Factor beta / physiology

Substances

  • Receptors, Transforming Growth Factor beta
  • Transforming Growth Factor beta