Organic contaminants in mountains

Environ Sci Technol. 2005 Jan 15;39(2):385-98. doi: 10.1021/es048859u.

Abstract

The study of organic contaminants at high altitudes is motivated by the potential risk that they pose to humans living in, or depending on resources derived from, mountains and to terrestrial and aquatic ecosystems in alpine areas. Mountains are also ideal settings to study contaminant transport and behavior along gradients of climate and surface cover. Information on organic contaminants in mountains is compiled from the literature and synthesized, with a focus on atmospheric transport and deposition, contaminant dynamics in alpine lakes and aquatic organisms, and concentration differences with altitude. Diurnal mountain winds, in connection with enhanced deposition at higher elevations caused by low temperatures and high precipitation rates, conspire to make mid-latitude mountains become convergence zones for selected persistent organic chemicals. In particular, the more volatile constituents of contaminant mixtures seem to become enriched, relative to the less volatile constituents at higher altitudes. For selected contaminants, concentration inversions (i.e., concentrations that increase with elevation) have been observed. A notable difference between cold trapping in high latitudes and high altitudes is the likely importance of precipitation. High rates of snow deposition in mid- and high-latitude mountains may lead to a large contaminant release during snowmelt. Regions above the tree line often have little capacity to retain the released contaminants, suggesting the potential for a highly dynamic contaminant fate situation during the snow-free season with significant revolatilization and runoff. The chemical and environmental factors that control the orographic cold trapping of organic contaminants should be examined further by measuring and comparatively interpreting concentration gradients along several mountain slopes with widely different characteristics. Future efforts should further focus on the bioaccumulation and potential effects of contaminants in the upper trophic levels of alpine food chains, on measuring more water-soluble, persistent organic contaminants, and on studying how climate change may affect contaminant dynamics in mountain settings.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Air Movements
  • Altitude*
  • Atmosphere
  • Biological Availability
  • Climate*
  • Environmental Monitoring
  • Environmental Pollutants / analysis*
  • Meteorological Concepts
  • Organic Chemicals / analysis*
  • Volatilization

Substances

  • Environmental Pollutants
  • Organic Chemicals