Mathematical modelling of the composting process: a review

Waste Manag. 2006;26(1):3-21. doi: 10.1016/j.wasman.2005.01.021.

Abstract

In this paper mathematical models of the composting process are examined and their performance evaluated. Mathematical models of the composting process have been derived from both energy and mass balance considerations, with solutions typically derived in time, and in some cases, spatially. Both lumped and distributed parameter models have been reported, with lumped parameter models presently predominating in the literature. Biological energy production functions within the models included first-order, Monod-type or empirical expressions, and these have predicted volatile solids degradation, oxygen consumption or carbon dioxide production, with heat generation derived using heat quotient factors. Rate coefficient correction functions for temperature, moisture, oxygen and/or free air space have been incorporated in a number of the first-order and Monod-type expressions. The most successful models in predicting temperature profiles were those which incorporated either empirical kinetic expressions for volatile solids degradation or CO2 production, or which utilised a first-order model for volatile solids degradation, with empirical corrections for temperature and moisture variations. Models incorporating Monod-type kinetic expressions were less successful. No models were able to predict maximum, average and peak temperatures to within criteria of 5, 2 and 2 degrees C, respectively, or to predict the times to reach peak temperatures to within 8 h. Limitations included the modelling of forced aeration systems only and the generation of temperature validation data for relatively short time periods in relation to those used in full-scale composting practice. Moisture and solids profiles were well predicted by two models, but oxygen and carbon dioxide profiles were generally poorly modelled. Further research to obtain more extensive substrate degradation data, develop improved first-order biological heat production models, investigate mechanistically-based moisture correction factors, explore the role of moisture tension, investigate model performance over thermophilic composting time periods, provide more information on model sensitivity and incorporate natural ventilation aeration expressions into composting process models, is suggested.

Publication types

  • Review

MeSH terms

  • Biodegradation, Environmental
  • Carbon Dioxide / metabolism
  • Computer Simulation
  • Models, Theoretical*
  • Oxygen / metabolism
  • Reproducibility of Results
  • Soil*
  • Temperature

Substances

  • Soil
  • Carbon Dioxide
  • Oxygen