Development and validation of a liquid chromatography/tandem mass spectrometric method for the determination of 39 mycotoxins in wheat and maize

Rapid Commun Mass Spectrom. 2006;20(18):2649-59. doi: 10.1002/rcm.2640.

Abstract

This paper describes the first validated method for the determination of 39 mycotoxins in wheat and maize using a single extraction step followed by liquid chromatography with electrospray ionization triple quadrupole mass spectrometry (LC/ESI-MS/MS) without the need for any clean-up. The 39 analytes included A- and B-trichothecenes (including deoxynivalenol-3-glucoside), zearalenone and related derivatives, fumonisins, enniatins, ergot alkaloids, ochratoxins, aflatoxins and moniliformin. The large number and the chemical diversity of the analytes required the application of the positive as well as the negative ion ESI mode in two consecutive chromatographic runs of 21 min each. The solvent mixture acetonitrile/water/acetic acid 79 + 20 + 1 (v/v/v) has been determined as the best compromise for the extraction of the analytes from wheat and maize. Raw extracts were diluted 1 + 1 and were injected without any clean-up. Ion-suppression effects due to co-eluting matrix components were negligible in the case of wheat, whereas significant signal suppression for 12 analytes was observed in maize, causing purely proportional systematic errors. Method performance characteristics were determined after spiking blank samples on multiple levels in triplicate. Coefficients of variation of the overall process of <5.1% and <3.0% were obtained for wheat and maize, respectively, from linear calibration data. Limits of detection ranged from 0.03 to 220 microg/kg. Apparent recoveries (including both the recoveries of the extraction step and matrix effects) were within the range of 100 +/- 10% for approximately half of the analytes. In extreme cases the apparent recoveries dropped to about 20%, but this could be compensated for to a large extent by the application of matrix-matched standards to correct for matrix-induced signal suppression, as only a few analytes such as nivalenol and the fumonisins exhibited incomplete extraction. For deoxynivalenol and zearalenone, the trueness of the method was confirmed through the analysis of certified reference materials.

Publication types

  • Research Support, Non-U.S. Gov't
  • Validation Study

MeSH terms

  • Chromatography, High Pressure Liquid*
  • Mycotoxins / analysis*
  • Reference Standards
  • Reproducibility of Results
  • Spectrometry, Mass, Electrospray Ionization / instrumentation
  • Spectrometry, Mass, Electrospray Ionization / methods*
  • Tandem Mass Spectrometry / instrumentation
  • Tandem Mass Spectrometry / methods*
  • Trichothecenes / analysis
  • Triticum / chemistry*
  • Triticum / microbiology
  • Zea mays / chemistry*
  • Zea mays / microbiology
  • Zearalenone / analysis

Substances

  • Mycotoxins
  • Trichothecenes
  • Zearalenone
  • deoxynivalenol