Future treatment of bone metastases

Clin Cancer Res. 2006 Oct 15;12(20 Pt 2):6305s-6308s. doi: 10.1158/1078-0432.CCR-06-1157.

Abstract

All bone surfaces are periodically remodeled by the coupled and balanced action of osteoclasts and osteoblasts, of which the activities are regulated by a variety of cytokines and growth factors. Patients with cancer metastatic to the skeleton often develop osteolytic bone lesions, in which the actions of osteoclasts and osteoblasts remain coupled, but become imbalanced in sites adjacent to the tumor. The result is net bone loss. Many cancers secrete osteoclast-stimulating cytokines, which increase bone resorption by osteoclasts. In turn, factors released from the bone matrix during osteolysis can stimulate tumor growth. In this so-called "vicious cycle," there are multiple sites that are targets for new bone-directed therapies. A variety of new agents for the treatment and prevention of osteolytic bone metastasis are currently being developed. These include new agents that inhibit osteoclast differentiation, bone adhesion, and osteoclast function. These new strategies have evolved from a better understanding of the interaction between tumor cells and cells in the bone marrow microenvironment. There is great promise that these new bone-targeted therapies can decrease the frequent skeletal-related events that greatly diminish quality of life of patients with bone metastases.

Publication types

  • Review

MeSH terms

  • Angiogenesis Inhibitors / therapeutic use*
  • Animals
  • Bone Density Conservation Agents / therapeutic use*
  • Bone Neoplasms / drug therapy*
  • Bone Neoplasms / physiopathology
  • Bone Neoplasms / secondary*
  • Clinical Trials as Topic
  • Endothelin-1 / antagonists & inhibitors
  • Humans
  • Osteoclasts / drug effects
  • Osteolysis / etiology
  • Osteolysis / prevention & control*

Substances

  • Angiogenesis Inhibitors
  • Bone Density Conservation Agents
  • Endothelin-1