Bacteroides fragilis toxin stimulates intestinal epithelial cell shedding and gamma-secretase-dependent E-cadherin cleavage

J Cell Sci. 2007 Jun 1;120(Pt 11):1944-52. doi: 10.1242/jcs.03455. Epub 2007 May 15.

Abstract

Enterotoxigenic Bacteroides fragilis - organisms that live in the colon - secrete a metalloprotease toxin, B. fragilis toxin. This toxin binds to a specific intestinal epithelial cell receptor and stimulates cell proliferation, which is dependent, in part, on E-cadherin degradation and beta-catenin-T-cell-factor nuclear signaling. Gamma-secretase (or presenilin-1) is an intramembrane cleaving protease and is a positive regulator of E-cadherin cleavage and a negative regulator of beta-catenin signaling. Here we examine the mechanistic details of toxin-initiated E-cadherin cleavage. B. fragilis toxin stimulated shedding of cell membrane proteins, including the 80 kDa E-cadherin ectodomain. Shedding of this domain required biologically active toxin and was not mediated by MMP-7, ADAM10 or ADAM17. Inhibition of gamma-secretase blocked toxin-induced proteolysis of the 33 kDa intracellular E-cadherin domain causing cell membrane retention of a distinct beta-catenin pool without diminishing toxin-induced cell proliferation. Unexpectedly, gamma-secretase positively regulated basal cell proliferation dependent on the beta-catenin-T-cell-factor complex. We conclude that toxin induces step-wise cleavage of E-cadherin, which is dependent on toxin metalloprotease and gamma-secretase. Our results suggest that differentially regulated beta-catenin pools associate with the E-cadherin-gamma-secretase adherens junction complex; one pool regulated by gamma-secretase is important to intestinal epithelial cell homeostasis.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Amyloid Precursor Protein Secretases / metabolism*
  • Bacterial Toxins / pharmacology*
  • Cadherins / chemistry
  • Cadherins / metabolism*
  • Cell Membrane / drug effects
  • Cell Proliferation / drug effects
  • Enzyme Inhibitors / pharmacology
  • Epithelial Cells / cytology
  • Epithelial Cells / drug effects*
  • Epithelial Cells / enzymology*
  • HT29 Cells
  • Humans
  • Intestines / cytology*
  • Intestines / drug effects
  • Matrix Metalloproteinases / metabolism
  • Membrane Proteins / metabolism
  • Metalloendopeptidases / pharmacology*
  • Models, Biological
  • Protein Processing, Post-Translational / drug effects*
  • Protein Structure, Tertiary

Substances

  • Bacterial Toxins
  • Cadherins
  • Enzyme Inhibitors
  • Membrane Proteins
  • Amyloid Precursor Protein Secretases
  • Bacteroides fragilis toxin
  • Matrix Metalloproteinases
  • Metalloendopeptidases