Replication of poliovirus requires binding of the poly(rC) binding protein to the cloverleaf as well as to the adjacent C-rich spacer sequence between the cloverleaf and the internal ribosomal entry site

J Virol. 2007 Sep;81(18):10017-28. doi: 10.1128/JVI.00516-07. Epub 2007 Jul 3.

Abstract

The 5' nontranslated region of poliovirus RNA contains two highly structured regions, the cloverleaf (CL) and the internal ribosomal entry site (IRES). A cellular protein, the poly(rC) binding protein (PCBP), has been reported to interact with the CL either alone or in combination with viral protein 3CD(pro). The formation of the ternary complex is essential for RNA replication and, hence, viral proliferation. PCBP also interacts with stem-loop IV of the IRES, an event critical for the initiation of cap-independent translation. Until recently, no special function was assigned to a spacer region (nucleotides [nt] 89 to 123) located between the CL and the IRES. However, on the basis of our discovery that this region strongly affects the neurovirulent phenotype of poliovirus, we have embarked upon genetic and biochemical analyses of the spacer region, focusing on two clusters of C residues (C(93-95) and C(98-100)) that are highly conserved among entero- and rhinoviruses. Replacement of all six C residues with A residues had no effect on translation in vitro but abolished RNA replication, leading to a lethal growth phenotype of the virus in HeLa cells. Mutation of the first group of C residues (C(93-95)) resulted in slower viral growth, whereas the C(98-100)A change had no significant effect on viability. Genetic analyses of the C-rich region by extensive mutagenesis and analyses of revertants revealed that two consecutive C residues (C(94-95)) were sufficient to promote normal growth of the virus. However, there was a distinct position effect of the preferred C residues. A 142-nt-long 5'-terminal RNA fragment including the CL and spacer sequences efficiently bound PCBP, whereas no PCBP binding was observed with the CL (nt 1 to 88) alone. Binding of PCBP to the 142-nt fragment was completely ablated after the two C clusters in the spacer were mutated to A clusters. In contrast, the same mutations had no effect on the binding of 3CD(pro) to the 142-nt RNA fragment. Stepwise replacement of the C residues with A residues resulted in impaired replication that covaried with weaker binding of PCBP in vitro. We conclude that PCBP has little, if any, binding affinity for the CL itself (nt 1 to 88) but requires additional nucleotides downstream of the CL for its function as an essential cofactor in poliovirus RNA replication. These data reveal a new essential function of the spacer between the CL and the IRES in poliovirus proliferation.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • 5' Untranslated Regions / genetics
  • 5' Untranslated Regions / metabolism*
  • Binding Sites / genetics
  • HeLa Cells
  • Humans
  • Multiprotein Complexes / genetics
  • Multiprotein Complexes / metabolism
  • Nucleic Acid Conformation
  • Poliovirus / genetics
  • Poliovirus / metabolism*
  • Poly C / genetics
  • Poly C / metabolism*
  • RNA, Viral / biosynthesis*
  • RNA, Viral / genetics
  • RNA-Binding Proteins / genetics
  • RNA-Binding Proteins / metabolism*
  • Rhinovirus / genetics
  • Rhinovirus / metabolism
  • Ribosomes / genetics
  • Ribosomes / metabolism
  • Viral Proteins / genetics
  • Viral Proteins / metabolism
  • Virus Replication / physiology*

Substances

  • 5' Untranslated Regions
  • Multiprotein Complexes
  • PCBP2 protein, human
  • RNA, Viral
  • RNA-Binding Proteins
  • Viral Proteins
  • Poly C