Control of erythropoietin gene expression and its use in medicine

Methods Enzymol. 2007:435:179-97. doi: 10.1016/S0076-6879(07)35010-6.

Abstract

Erythropoietin (EPO) gene expression is under the control of inhibitory (GATA-2, NF-kappaB) and stimulatory (hypoxia-inducible transcription factor [HIF]-2, hepatocyte nuclear factor [HNF]-4alpha [alpha]) transcription factors. EPO deficiency is the main cause of the anemia in chronic kidney disease (CKD) and a contributing factor in the anemias of inflammation and cancer. Small, orally active compounds capable of stimulating endogenous EPO production are in preclinical or clinical trials for treatment of anemia. These agents include stabilizers of the HIFs that bind to the EPO enhancer and GATA inhibitors which prevent GATA from suppressing the EPO promoter. While HIF stabilizing drugs may prove useful as inexpensive second-line choices, at present, their side effects--particularly tumorigenicity--preclude their use as first-choice therapy. As an alternative, EPO gene therapy has been explored in animal studies and in trials on CKD patients. Here, a major problem is immunogenicity of ex vivo transfected implanted cells and of the recombinant protein produced after ex vivo or in vivo EPO complementary DNA (cDNA) transfer. Recombinant human EPO (rhEPO) engineered in Chinese hamster ovary (CHO) cell cultures (epoetin alpha and epoetin beta [beta]) and its hyperglycosylated analogue darbepoetin alpha are established and safe drugs to avoid allogeneic red blood cell transfusion. Gene-activated EPO (epoetin delta [delta]) from human fibrosarcoma cells (HT-1080) has recently been launched for use in CKD. It is important to know the basics of the technologies, production processes, and structural properties of the novel anti-anemic strategies and drugs.

Publication types

  • Review

MeSH terms

  • Erythropoietin / genetics*
  • Erythropoietin / metabolism*
  • Erythropoietin / therapeutic use*
  • Gene Expression / drug effects
  • Gene Expression Regulation*
  • Gene Transfer Techniques
  • Genetic Engineering
  • Genetic Therapy*
  • Humans
  • Recombinant Proteins

Substances

  • Recombinant Proteins
  • Erythropoietin