Configuration selection as a route towards efficient vibrational configuration interaction calculations

J Chem Phys. 2007 Nov 14;127(18):184109. doi: 10.1063/1.2790016.

Abstract

A configuration selective vibrational configuration interaction (CI) approach is presented that efficiently reduces the variational space and thus leads to significant speedups in comparison to standard vibrational CI implementations. Deviations with respect to reference calculations are well below the accuracy of the underlying electronic structure calculations for the potential and hence are essentially negligible. Parallel implementations of the presented configuration selective vibrational CI approaches lead to further significant time savings. Benchmark calculations based on potential energy surfaces of coupled-cluster quality are presented for the fundamental modes of cis- and trans-difluoroethylene. The size-consistency error within the vibrational configuration interaction calculations of the difluoroethylene dimer has been studied in dependence on the excitation level.