Approaches to mitochondrially mediated cancer therapy

Semin Cancer Biol. 2008 Jun;18(3):226-35. doi: 10.1016/j.semcancer.2007.12.006. Epub 2007 Dec 8.

Abstract

For some malignant cancers even combined surgical, radiotherapeutic and chemotherapeutic approaches are not curative, indeed, in certain tumour types even a modest survival benefit is difficult to achieve. There are various biological reasons which underlie this profound resistance but the propensity of cancer cells to repair breaks caused by DNA-damaging radiation and cytotoxic drugs is of major significance in this context. Such highly resistant tumours include the malignant gliomas which are intrinsic to and directly affect the brain and spinal cord. In evaluating approaches which do not elicit tumour cell death directly by DNA damage, it is intriguing to consider mitochondrially mediated apoptosis as a potentially effective alternative. Since the mitochondrial membrane potentials in cancer cells are frequently reduced in comparison with those of non-neoplastic cells this allows a window of opportunity for small molecule agents to enter the tumour cell mitochondria and reduce oxygen consumption with subsequent release of cytochrome c and activation of a caspase pathway to apoptosis which is cancer cell specific. In the quest for agents which can selectively destroy neoplastic cells in this manner, whilst leaving normal adjacent cells intact, various tricyclic drugs have come under scrutiny. In a range of laboratory assays we, and others, have established that certain cancers and, in particular, malignant glioma, are intrinsically sensitive to this approach. We have also established the cellular, molecular and biochemical mechanisms underlying this process. While such archival tricyclics as the antidepressants, clomipramine and amitriptyline, have been used in these experiments their commercial development in cancer therapy has not been forthcoming and their clinical use in glioma has been confined to anecdotal cases. In addition, the dose-dependant role of agents such as anticonvulsants and steroids commonly used in glioma patients in modulating efficacy of the tricyclics is a matter for continued investigation. Other ways of targeting the mitochondrion for cancer therapy include exploitation of the 18kDa translocator protein (peripheral-type benzodiazepine receptor) within the mitochondrial permeability transition pore and enzymatic or molecular modification of a species of ganglioside (GD3/GD3(A)) expressed on the surface of neoplastic cells which are determinants of mitochondrially mediated apoptosis. It is hoped that such approaches may lead to clinical programmes which will improve the prognosis for patients suffering from highly resistant neoplasms.

Publication types

  • Review

MeSH terms

  • Animals
  • Dexamethasone / therapeutic use
  • Gangliosides / metabolism
  • Humans
  • Mitochondria / drug effects*
  • Mitochondria / metabolism*
  • Neoplasms / drug therapy*
  • Neoplasms / metabolism*
  • Neoplastic Stem Cells / metabolism
  • Valproic Acid / therapeutic use

Substances

  • Gangliosides
  • Valproic Acid
  • Dexamethasone