Thermodynamic interactions in double-network hydrogels

J Phys Chem B. 2008 Apr 3;112(13):3903-9. doi: 10.1021/jp710284e. Epub 2008 Mar 11.

Abstract

Double-network hydrogels (DN-gels) prepared from the combination of a moderately cross-linked anionic polyelectrolyte (PE) and an uncross-linked linear polymer solution (NP) exhibit mechanical properties such as fracture toughness that are intriguingly superior to that of their individual constituents. The scheme of double-network preparation, however, is not equally successful for all polyelectrolyte/neutral polymer pairs. A successful example is the combination of poly(2-acrylamido-2-methyl-1-propane sulfonic acid) (PAMPS) cross-linked network and linear polyacrylamide (PAAm), which results in DN-gels with fracture strength under compression approaching that of articular cartilage ( approximately 20 MPa). Small-angle neutron scattering was used to determine the thermodynamic interaction parameters for PAMPS and PAAm in water as a first step to elucidate the molecular origin responsible for this superior property. Measurements on PAMPS/PAAm DN-gels and their solution blend counterparts indicate that the two polymers interact favorably with each other while in water. This favorable PAMPS/PAAm interaction given by the condition chi(PE-NP) < chi(PE-water) <chi(NP-water), where chi is the Flory-Huggins interaction parameter, is consistent with some of the salient features of the DN structure revealed by SANS, and it may also contribute to the ultimate mechanical properties of DN-gels.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Acrylic Resins / chemistry*
  • Anions / chemistry
  • Electrolytes / chemistry
  • Gels / chemistry
  • Hydrogels / chemistry*
  • Polymers / chemistry*
  • Scattering, Small Angle
  • Solutions / chemistry
  • Sulfonic Acids / chemistry*
  • Thermodynamics*
  • Water / chemistry

Substances

  • Acrylic Resins
  • Anions
  • Electrolytes
  • Gels
  • Hydrogels
  • Polymers
  • Solutions
  • Sulfonic Acids
  • Water
  • poly(2-acrylamido-2-methyl-1-propanesulfonic acid)
  • polyacrylamide