Roots of angiosperm formins: the evolutionary history of plant FH2 domain-containing proteins

BMC Evol Biol. 2008 Apr 22:8:115. doi: 10.1186/1471-2148-8-115.

Abstract

Background: Shuffling of modular protein domains is an important source of evolutionary innovation. Formins are a family of actin-organizing proteins that share a conserved FH2 domain but their overall domain architecture differs dramatically between opisthokonts (metazoans and fungi) and plants. We performed a phylogenomic analysis of formins in most eukaryotic kingdoms, aiming to reconstruct an evolutionary scenario that may have produced the current diversity of domain combinations with focus on the origin of the angiosperm formin architectures.

Results: The Rho GTPase-binding domain (GBD/FH3) reported from opisthokont and Dictyostelium formins was found in all lineages except plants, suggesting its ancestral character. Instead, mosses and vascular plants possess the two formin classes known from angiosperms: membrane-anchored Class I formins and Class II formins carrying a PTEN-like domain. PTEN-related domains were found also in stramenopile formins, where they have been probably acquired independently rather than by horizontal transfer, following a burst of domain rearrangements in the chromalveolate lineage. A novel RhoGAP-related domain was identified in some algal, moss and lycophyte (but not angiosperm) formins that define a specific branch (Class III) of the formin family.

Conclusion: We propose a scenario where formins underwent multiple domain rearrangements in several eukaryotic lineages, especially plants and chromalveolates. In plants this replaced GBD/FH3 by a probably inactive RhoGAP-like domain, preserving a formin-mediated association between (membrane-anchored) Rho GTPases and the actin cytoskeleton. Subsequent amplification of formin genes, possibly coincident with the expansion of plants to dry land, was followed by acquisition of alternative membrane attachment mechanisms present in extant Class I and Class II formins, allowing later loss of the RhoGAP-like domain-containing formins in angiosperms.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Evolution, Molecular*
  • GTPase-Activating Proteins / genetics
  • Genes, Plant*
  • Genetic Variation
  • Likelihood Functions
  • Magnoliopsida / enzymology
  • Magnoliopsida / genetics*
  • Molecular Sequence Data
  • PTEN Phosphohydrolase / genetics
  • Phylogeny
  • Plant Proteins / genetics*
  • Protein Structure, Tertiary / genetics*
  • Sequence Alignment
  • Sequence Analysis, Protein
  • rho GTP-Binding Proteins / genetics

Substances

  • GTPase-Activating Proteins
  • Plant Proteins
  • rho GTPase-activating protein
  • PTEN Phosphohydrolase
  • rho GTP-Binding Proteins