Common dysregulation of Wnt/Frizzled receptor elements in human hepatocellular carcinoma

Br J Cancer. 2008 Jul 8;99(1):143-50. doi: 10.1038/sj.bjc.6604422. Epub 2008 Jun 24.

Abstract

Dysregulation of growth factors and their receptors is central to human hepatocellular carcinoma (HCC). We previously demonstrated that the Frizzled-7 membrane receptor mediating the Wnt signalling can activate the beta-catenin pathway and promotes malignancy in human hepatitis B virus-related HCCs. Expression patterns of all the 10 Frizzled receptors, and their extracellular soluble autoparacrine regulators (19 Wnt activators and 4 sFRP inhibitors) were assessed by real-time RT-PCR in 62 human HCC of different etiologies and their matched peritumorous areas. Immunostaining was performed to localise Frizzled on cell types in liver tissues. Regulation of three known Frizzled-dependent pathways (beta-catenin, protein kinase C, and C-Jun NH(2)-terminal kinase) was measured in tissues by western blot. We found that eight Frizzled-potentially activating events were pleiotropically dysregulated in 95% HCC and 68% peritumours as compared to normal livers (upregulations of Frizzled-3/6/7 and Wnt3/4/5a, or downregulation of sFRP1/5), accumulating gradually with severity of fibrosis in peritumours and loss of differentiation status in tumours. The hepatocytes supported the Wnt/Frizzled signalling since specifically overexpressing Frizzled receptors in liver tissues. Dysregulation of the eight Frizzled-potentially activating events was associated with differential activation of the three known Frizzled-dependent pathways. This study provides an extensive analysis of the Wnt/Frizzled receptor elements and reveals that the dysregulation may be one of the most common and earliest events described thus far during hepatocarcinogenesis.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carcinoma, Hepatocellular / genetics*
  • Carcinoma, Hepatocellular / pathology
  • Cell Line, Tumor
  • Frizzled Receptors / biosynthesis
  • Frizzled Receptors / genetics*
  • Gene Expression Regulation
  • Humans
  • Liver Neoplasms / genetics*
  • Liver Neoplasms / pathology

Substances

  • Frizzled Receptors