Synthesis, characterization, X-ray structure and in vitro antimycobacterial and antitumoral activities of Ru(II) phosphine/diimine complexes containing the "SpymMe2" ligand, SpymMe2=4,6-dimethyl-2-mercaptopyrimidine

J Inorg Biochem. 2008 Sep;102(9):1783-9. doi: 10.1016/j.jinorgbio.2008.05.009. Epub 2008 May 29.

Abstract

The reaction of cis-[RuCl(2)(dppb)(N-N)], dppb=1,4-bis(diphenylphosphino)butane, complexes with the ligand HSpymMe(2), 4,6-dimethyl-2-mercaptopyrimidine, yielded the cationic complexes [Ru(SpymMe(2))(dppb)(N-N)]PF(6), N-N=bipy (1) and Me-bipy (2), bipy=2,2'-bipyridine and Me-bipy=4,4'-dimethyl-2,2'-bipyridine, which were characterized by spectroscopic and electrochemical techniques and X-ray crystallography and elemental analysis. Additionally, preliminary in vitro tests for antimycobacterial activity against Mycobacterium tuberculosis H37Rv ATCC 27264 and antitumor activity against the MDA-MB-231 human breast tumor cell line were carried out on the new complexes and also on the precursors cis-[RuCl(2)(dppb)(N-N)], N-N=bipy (3) and Me-bipy (4) and the free ligands dppb, bipy, Me-bipy and SpymMe(2). The minimal inhibitory concentration (MIC) of compounds needed to kill 90% of mycobacterial cells and the IC(50) values for the antitumor activity were determined. Compounds 1-4 exhibited good in vitro activity against M. tuberculosis, with MIC values ranging between 0.78 and 6.25microg/mL, compared to the free ligands (MIC of 25 to >50microg/mL) and the drugs used to treat tuberculosis. Complexes 1 and 2 also showed promising antitumor activity, with IC(50) values of 0.46+/-0.02 and 0.43+/-0.08microM, respectively, against MDA-MB-231 breast tumor cells.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antineoplastic Agents / chemical synthesis*
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology
  • Cell Line, Tumor
  • Cell Survival / drug effects
  • Crystallography, X-Ray
  • Humans
  • Magnetic Resonance Spectroscopy
  • Microbial Sensitivity Tests
  • Models, Molecular
  • Molecular Structure
  • Phosphines / chemistry*
  • Pyridines / chemistry*
  • Ruthenium / chemistry*

Substances

  • Antineoplastic Agents
  • Phosphines
  • Pyridines
  • Ruthenium
  • phosphine