Deconstructing voltage sensor function and pharmacology in sodium channels

Nature. 2008 Nov 13;456(7219):202-8. doi: 10.1038/nature07473.

Abstract

Voltage-activated sodium (Na(v)) channels are crucial for the generation and propagation of nerve impulses, and as such are widely targeted by toxins and drugs. The four voltage sensors in Na(v) channels have distinct amino acid sequences, raising fundamental questions about their relative contributions to the function and pharmacology of the channel. Here we use four-fold symmetric voltage-activated potassium (K(v)) channels as reporters to examine the contributions of individual S3b-S4 paddle motifs within Na(v) channel voltage sensors to the kinetics of voltage sensor activation and to forming toxin receptors. Our results uncover binding sites for toxins from tarantula and scorpion venom on each of the four paddle motifs in Na(v) channels, and reveal how paddle-specific interactions can be used to reshape Na(v) channel activity. One paddle motif is unique in that it slows voltage sensor activation, and toxins selectively targeting this motif impede Na(v) channel inactivation. This reporter approach and the principles that emerge will be useful in developing new drugs for treating pain and Na(v) channelopathies.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, N.I.H., Intramural

MeSH terms

  • Amino Acid Motifs
  • Animals
  • Ion Channel Gating / drug effects*
  • Models, Molecular
  • Mutagenesis
  • Potassium Channels, Voltage-Gated / genetics
  • Potassium Channels, Voltage-Gated / metabolism
  • Protein Interaction Domains and Motifs / genetics
  • Protein Interaction Domains and Motifs / physiology
  • Rats
  • Recombinant Fusion Proteins / genetics
  • Recombinant Fusion Proteins / metabolism
  • Scorpion Venoms / pharmacology
  • Sodium Channels / genetics
  • Sodium Channels / metabolism*
  • Spider Venoms / pharmacology
  • Xenopus

Substances

  • Potassium Channels, Voltage-Gated
  • Recombinant Fusion Proteins
  • Scorpion Venoms
  • Sodium Channels
  • Spider Venoms