Thermophilic Bacillus coagulans requires less cellulases for simultaneous saccharification and fermentation of cellulose to products than mesophilic microbial biocatalysts

Appl Biochem Biotechnol. 2009 May;155(1-3):379-85. doi: 10.1007/s12010-008-8509-4. Epub 2009 Jan 21.

Abstract

Ethanol production from lignocellulosic biomass depends on simultaneous saccharification of cellulose to glucose by fungal cellulases and fermentation of glucose to ethanol by microbial biocatalysts (SSF). The cost of cellulase enzymes represents a significant challenge for the commercial conversion of lignocellulosic biomass into renewable chemicals such as ethanol and monomers for plastics. The cellulase concentration for optimum SSF of crystalline cellulose with fungal enzymes and a moderate thermophile, Bacillus coagulans, was determined to be about 7.5 FPU g(-1) cellulose. This is about three times lower than the amount of cellulase required for SSF with Saccharomyces cerevisiae, Zymomonas mobilis, or Lactococcus lactis subsp. lactis whose growth and fermentation temperature optimum is significantly lower than that of the fungal cellulase activity. In addition, B. coagulans also converted about 80% of the theoretical yield of products from 40 g/L of crystalline cellulose in about 48 h of SSF with 10 FPU g(-1) cellulose while yeast, during the same period, only produced about 50% of the highest yield produced at end of 7 days of SSF. These results show that a match in the temperature optima for cellulase activity and fermentation is essential for decreasing the cost of cellulase in cellulosic ethanol production.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Bacillus / enzymology*
  • Bacillus / metabolism*
  • Cellulases / metabolism*
  • Cellulose / metabolism*
  • Energy-Generating Resources
  • Ethanol / metabolism*
  • Fermentation / physiology*
  • Lactococcus lactis / enzymology
  • Lactococcus lactis / metabolism
  • Saccharomyces cerevisiae / enzymology
  • Saccharomyces cerevisiae / metabolism
  • Temperature
  • Zymomonas / enzymology
  • Zymomonas / metabolism

Substances

  • Ethanol
  • Cellulose
  • Cellulases