Tuberous sclerosis complex, implication from a rare genetic disease to common cancer treatment

Hum Mol Genet. 2009 Apr 15;18(R1):R94-100. doi: 10.1093/hmg/ddp032.

Abstract

Tuberous sclerosis complex (TSC) is a relatively rare autosomal dominant disorder characterized by widespread benign tumor formation in a variety of organs. Mutations in either TSC1 or TSC2 tumor suppressor gene are responsible for TSC. The gene products of TSC1 and TSC2, also known as hamartin and tuberin, respectively, form a physical and functional complex and inhibit the mammalian target of rapamycin complex 1 (mTORC1) signaling. The mTORC1 pathway is an evolutionarily conserved growth promoting pathway. mTORC1 plays an essential role in a wide array of cellular processes including translation, transcription, trafficking and autophagy. In this review, we will discuss recent progresses in the TSC-mTOR field and their physiological functions and alterations of this pathway in pathophysiology.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Animals
  • Cell Physiological Phenomena
  • Humans
  • Rare Diseases / genetics
  • Signal Transduction
  • Transcription Factors / metabolism
  • Tuberous Sclerosis / genetics*
  • Tuberous Sclerosis / metabolism
  • Tuberous Sclerosis Complex 1 Protein
  • Tuberous Sclerosis Complex 2 Protein
  • Tumor Suppressor Proteins / genetics

Substances

  • CRTC1 protein, human
  • TSC1 protein, human
  • TSC2 protein, human
  • Transcription Factors
  • Tuberous Sclerosis Complex 1 Protein
  • Tuberous Sclerosis Complex 2 Protein
  • Tumor Suppressor Proteins