MiR-21 regulates adipogenic differentiation through the modulation of TGF-beta signaling in mesenchymal stem cells derived from human adipose tissue

Stem Cells. 2009 Dec;27(12):3093-102. doi: 10.1002/stem.235.

Abstract

A better understanding of the molecular mechanisms that govern human adipose tissue-derived mesenchymal stem cells (hASCs) differentiation could improve hASCs-based cell therapy and provide new insights into a number of diseases, including obesity. In this study, we examined the roles of microRNA-21 (miR-21) in adipogenic differentiation of hASCs. We found that miR-21 expression was transiently increased after induction of adipogenic differentiation, peaked at 3 days, and returned to the baseline level 8 days. Lentiviral overexpression of miR-21 enhanced adipogenic differentiation. Overexpression of miR-21 decreased both protein and mRNA levels of TGFBR2. The expression of TGFBR2 was decreased during adipogenic differentiation of hASCs in concordance with an increase in the level of miR-21. In contrast, inhibiting miR-21 with 2'-O-methyl-antisense microRNA increased TGFBR2 protein levels in hASCs, accompanied by decreased adipogenic differentiation. The activity of a luciferase construct containing the miR-21 target site from the TGFBR2 3'UTR was lower in LV-miR21-infected hASCs than in LV-miLacZ infected cells. TGF-beta-induced inhibition of adipogenic differentiation was significantly decreased in miR-21 overexpressing cells compared with control lentivirus-transduced cells. RNA interference-mediated downregulation of SMAD3, but not of SMAD2, increased adipogenic differentiation. Overexpression and inhibition of miR-21 altered SMAD3 phosphorylation without affecting total levels of SMAD3 protein. Our data are the first to demonstrate that the role of miR-21 in the adipogenic differentiation of hASCs is mediated through the modulation of TGF-beta signaling. This study improves our knowledge of the molecular mechanisms governing hASCs differentiation, which may underlie the development of obesity or other metabolic diseases.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 3' Untranslated Regions
  • Adipose Tissue / cytology
  • Adipose Tissue / metabolism*
  • Base Sequence
  • Cell Differentiation*
  • Cells, Cultured
  • Gene Expression Regulation
  • Humans
  • Mesenchymal Stem Cells / cytology
  • Mesenchymal Stem Cells / metabolism*
  • MicroRNAs / genetics*
  • Protein Serine-Threonine Kinases / genetics
  • Protein Serine-Threonine Kinases / metabolism
  • RNA, Messenger / genetics
  • Receptor, Transforming Growth Factor-beta Type II
  • Receptors, Transforming Growth Factor beta / genetics
  • Receptors, Transforming Growth Factor beta / metabolism
  • Signal Transduction*
  • Smad2 Protein / genetics
  • Smad2 Protein / metabolism
  • Smad3 Protein / genetics
  • Smad3 Protein / metabolism
  • Transforming Growth Factor beta / metabolism*

Substances

  • 3' Untranslated Regions
  • MIRN21 microRNA, human
  • MicroRNAs
  • RNA, Messenger
  • Receptors, Transforming Growth Factor beta
  • SMAD2 protein, human
  • SMAD3 protein, human
  • Smad2 Protein
  • Smad3 Protein
  • Transforming Growth Factor beta
  • Protein Serine-Threonine Kinases
  • Receptor, Transforming Growth Factor-beta Type II