Dynamic synergy of graphitic nanoplatelets and multi-walled carbon nanotubes in polyetherimide nanocomposites

Nanotechnology. 2010 Mar 12;21(10):105702. doi: 10.1088/0957-4484/21/10/105702. Epub 2010 Feb 15.

Abstract

Hybridizing graphitic nanoplatelets (GNP) with commercially functionalized multi-walled carbon nanotubes (MWCNTs) in a polyetherimide (PEI) composite at a total loading of 0.5 wt% resulted in considerable improvements in electrical conductivity, thermal conductivity and dynamic mechanical properties, compared to solely GNP or solely MWCNT composites at the same total loading. The results reveal a synergistic interaction between the GNPs and MWCNTs based on GNP protection against fragmentation of the MWCNTs during high power sonication, while still allowing full dispersion of both fillers, by providing a shielding mechanism against MWCNT damage during dispersion processing. A new process for molecular level dispersion of exfoliated GNPs in PEI is also reported. Field emission scanning electron microscopy revealed strong interactions between PEI and the flat surfaces of GNPs and effectively intercalated GNP morphology within the matrix. GNPs alone can also produce excellent electrical conductivity improvements: at 1.0 wt% of GNP, electrical conductivity of the composite increased by 11 orders of magnitude and the percolation threshold was determined to be between 0.5 and 1.0 wt% of GNP.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.