MicroRNA networks in mouse lung organogenesis

PLoS One. 2010 May 26;5(5):e10854. doi: 10.1371/journal.pone.0010854.

Abstract

Background: MicroRNAs (miRNAs) are known to be important regulators of both organ development and tumorigenesis. MiRNA networks and their regulation of messenger RNA (mRNA) translation and protein expression in specific biological processes are poorly understood.

Methods: We explored the dynamic regulation of miRNAs in mouse lung organogenesis. Comprehensive miRNA and mRNA profiling was performed encompassing all recognized stages of lung development beginning at embryonic day 12 and continuing to adulthood. We analyzed the expression patterns of dynamically regulated miRNAs and mRNAs using a number of statistical and computational approaches, and in an integrated manner with protein levels from an existing mass-spectrometry derived protein database for lung development.

Results: In total, 117 statistically significant miRNAs were dynamically regulated during mouse lung organogenesis and clustered into distinct temporal expression patterns. 11,220 mRNA probes were also shown to be dynamically regulated and clustered into distinct temporal expression patterns, with 3 major patterns accounting for 75% of all probes. 3,067 direct miRNA-mRNA correlation pairs were identified involving 37 miRNAs. Two defined correlation patterns were observed upon integration with protein data: 1) increased levels of specific miRNAs directly correlating with downregulation of predicted mRNA targets; and 2) increased levels of specific miRNAs directly correlating with downregulation of translated target proteins without detectable changes in mRNA levels. Of 1345 proteins analyzed, 55% appeared to be regulated in this manner with a direct correlation between miRNA and protein level, but without detectable change in mRNA levels.

Conclusion: Systematic analysis of microRNA, mRNA, and protein levels over the time course of lung organogenesis demonstrates dynamic regulation and reveals 2 distinct patterns of miRNA-mRNA interaction. The translation of target proteins affected by miRNAs independent of changes in mRNA level appears to be a prominent mechanism of developmental regulation in lung organogenesis.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Chromosomes, Mammalian / genetics
  • Cluster Analysis
  • Gene Expression Regulation, Developmental
  • Gene Regulatory Networks / genetics*
  • Genome / genetics
  • Lung / embryology*
  • Lung / metabolism*
  • Mice
  • MicroRNAs / genetics*
  • MicroRNAs / metabolism
  • Organogenesis / genetics*
  • Principal Component Analysis
  • RNA, Messenger / genetics
  • RNA, Messenger / metabolism
  • Signal Transduction / genetics
  • Time Factors

Substances

  • MicroRNAs
  • RNA, Messenger