Structure and magnetic properties of hcp and fcc nanocrystalline thin Ni films and nanoparticles produced by radio frequency magnetron sputtering

J Nanosci Nanotechnol. 2010 Sep;10(9):6024-8. doi: 10.1166/jnn.2010.2594.

Abstract

We report on the growth of thin Ni films by radio frequency magnetron sputtering in Ar-plasma. The growth temperature was about 350 K and the films were deposited on various substrates such as glass, silicon, sapphire and alumina. The thickness of the thinnest films was estimated by the appearance of Kiessig fringes up to about 2theta = 8 degrees in the small-angle X-ray diffraction pattern, as expected for high-quality atomically-flat thin films. With the help of this, a quartz balance system was calibrated and used for measuring the thickness of thicker samples with an accuracy of better than 5%. Structural characterization via X-ray diffraction and high resolution transmission electron microscopy revealed an Ar-gas pressure window, where single phase hcp Ni films may be grown. The magnetic response of the Ni films was checked at room temperature via a newly established and fully automatic polar magneto-optic Kerr effect magnetometer. The hcp films show no magnetic response. Interestingly, the magnetic saturation field of fcc films deposited at low Ar pressure is comparable to the one of bulk Ni, while the one of fcc films deposited at high Ar pressures is decreased, revealing the presence of residual strain in the films. Finally, it is shown that it is possible to form films which contain magnetic Ni fcc nanoparticles in a non-magnetic hcp matrix, i.e., a system interesting for technological applications demanding a single Ni target for its production.