Tubulin tyrosine ligase-like genes ttll3 and ttll6 maintain zebrafish cilia structure and motility

J Biol Chem. 2011 Apr 1;286(13):11685-95. doi: 10.1074/jbc.M110.209817. Epub 2011 Jan 24.

Abstract

Tubulin post-translational modifications generate microtubule heterogeneity and modulate microtubule function, and are catalyzed by tubulin tyrosine ligase-like (TTLL) proteins. Using antibodies specific to monoglycylated, polyglycylated, and glutamylated tubulin in whole mount immunostaining of zebrafish embryos, we observed distinct, tissue-specific patterns of tubulin modifications. Tubulin modification patterns in cilia correlated with the expression of ttll3 and ttll6 in ciliated cells. Expression screening of all zebrafish tubulin tyrosine ligase-like genes revealed additional tissue-specific expression of ttll1 in brain neurons, ttll4 in muscle, and ttll7 in otic placodes. Knockdown of ttll3 eliminated cilia tubulin glycylation but had surprisingly mild effects on cilia structure and motility. Similarly, knockdown of ttll6 strongly reduced cilia tubulin glutamylation but only partially affected cilia structure and motility. Combined loss of function of ttll3 and ttll6 caused near complete loss of cilia motility and induced a variety of axonemal ultrastructural defects similar to defects previously observed in zebrafish fleer mutants, which were shown to lack tubulin glutamylation. Consistently, we find that fleer mutants also lack tubulin glycylation. These results indicate that tubulin glycylation and glutamylation have overlapping functions in maintaining cilia structure and motility and that the fleer/dyf-1 TPR protein is required for both types of tubulin post-translational modification.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Axoneme / genetics
  • Axoneme / metabolism
  • Axoneme / ultrastructure
  • Cilia / enzymology
  • Cilia / genetics
  • Cilia / ultrastructure
  • Gene Expression Regulation, Enzymologic / physiology*
  • Gene Knockdown Techniques
  • Mutation
  • Organ Specificity / physiology
  • Peptide Synthases / genetics
  • Peptide Synthases / metabolism*
  • Protein Processing, Post-Translational / physiology*
  • Tubulin / genetics
  • Tubulin / metabolism*
  • Zebrafish / anatomy & histology
  • Zebrafish / metabolism*
  • Zebrafish Proteins / genetics
  • Zebrafish Proteins / metabolism*

Substances

  • Tubulin
  • Zebrafish Proteins
  • flr protein, zebrafish
  • Peptide Synthases
  • Ttll3 protein, zebrafish
  • tubulin polyglutamylase