Time-dependent effects of leptin on food intake and locomotor activity in goldfish

Peptides. 2011 May;32(5):989-95. doi: 10.1016/j.peptides.2011.01.028. Epub 2011 Feb 1.

Abstract

The present study investigates the possible circadian dependence of leptin effects on food intake, locomotor activity, glycemia and plasma cortisol levels in goldfish (Carassius auratus). Fish were maintained under 12L:12D photoperiod and subjected to two different feeding schedules, one group fed during photophase (10:00) and the other one during scotophase (22:00). Leptin or saline were intraperitoneally injected at two different times (10:00 or 22:00), coincident or not with the meal time. To eliminate the entraining effect of the light/dark cycle, goldfish maintained under 24h light (LL) were fed and leptin-injected at 10:00. A reduction in food intake and locomotor activity and an increase in glycemia were found in goldfish fed and leptin-injected at 10:00. No significant changes in circulating cortisol were observed. Those effects were not observed when leptin was administered during the scotophase, regardless the feeding schedule; neither in fish maintained under LL, suggesting that a day/night cycle would be necessary to observe the actions of leptin administered during the photophase. Changes in locomotor activity and glycemia were only observed in goldfish when leptin was injected at daytime, coincident with the feeding schedule, suggesting that these leptin actions could be dependent on the feeding time as zeitgeber. In view of these results it appears that the circadian dependence of leptin actions in goldfish can be determined by the combination of both zeitgebers, light/dark cycle and food. Our results point out the relevance of the administration time when investigating regulatory functions of hormones.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Circadian Rhythm / drug effects
  • Eating / drug effects*
  • Goldfish
  • Leptin / pharmacology*
  • Motor Activity / drug effects*

Substances

  • Leptin