Antimicrobial peptides with cell-penetrating peptide properties and vice versa

Eur Biophys J. 2011 Apr;40(4):387-97. doi: 10.1007/s00249-011-0682-7. Epub 2011 Feb 19.

Abstract

Antimicrobial peptides (AMPs) are a group of peptides that are active against a diverse spectrum of microorganisms. Due to their mode of action, AMPs are a promising class of molecules that could overcome the problems of increasing resistance of bacteria to conventional antibiotics. Furthermore, AMPs are strongly membrane-active and some are able to translocate into cells without the necessity for permanent membrane permeabilization. This feature has brought them into focus for use as transport vectors in the context of drug delivery. Since the plasma membrane restricts transport of bioactive substances into cells, great research interest lies in the development of innovative ways to overcome this barrier and to increase bioavailability. In this context, peptide-based transport systems, such as cell-penetrating peptides (CPPs), have come into focus, and their efficiency has been demonstrated in many different applications. However, more recently, also some AMPs have been used as efficient vectors for intracellular translocation of various active molecules. This review summarizes recent efforts in this interesting field of drug delivery. Moreover, some examples of the application of CPPs as efficient antimicrobial substances will be discussed.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Anti-Infective Agents / chemistry
  • Anti-Infective Agents / pharmacology*
  • Antimicrobial Cationic Peptides / chemistry
  • Antimicrobial Cationic Peptides / pharmacology*
  • Biological Transport / drug effects
  • Cell Membrane Permeability / drug effects
  • Cell-Penetrating Peptides / chemistry
  • Cell-Penetrating Peptides / pharmacology*
  • Drug Delivery Systems

Substances

  • Anti-Infective Agents
  • Antimicrobial Cationic Peptides
  • Cell-Penetrating Peptides