Monitoring of dopamine and its metabolites in brain microdialysates: method combining freeze-drying with liquid chromatography-tandem mass spectrometry

J Chromatogr A. 2011 May 27;1218(21):3382-91. doi: 10.1016/j.chroma.2011.02.006. Epub 2011 Feb 26.

Abstract

A sensitive assay method was developed for a parallel, rapid and precise determination of dopamine and its metabolites, homovanillic acid, 3-methoxytyramine and 3,4-dihydroxyphenylacetic acid, from brain microdialysates. The method consisted of a pre-treatment step, freeze-drying (lyophilization), to concentrate dopamine and its metabolites from the microdialysates, and a detection step using liquid chromatography combined with electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). In particular, the reaction monitoring mode was selected for its extremely high degree of selectivity and the stable-isotope-dilution assay for its high precision of quantification. The developed method was characterized by the following parameters: the precision of the developed method was determined as ≥88.6% for dopamine, ≥89.9% for homovanillic acid, ≥86.1% for 3-methoxytyramine and ≥88.1% for 3,4-dihydroxyphenylacetic acid; the mean accuracy was determined as ≥88.2% for dopamine, ≥88.3% for homovanillic acid, ≥85.9% for 3-methoxytyramine and ≥88.6% for 3,4-dihydroxyphenylacetic acid. The developed method was compared to (1) other combinations of pre-treatment methods (solid phase extraction and nitrogen stripping) with LC-MS and (2) another detection method, liquid chromatography, with electrochemical detection. The novel developed method using combination of lyophilization with LC-ESI-MS/MS was tested on real samples obtained from the nucleus accumbens of rat pups after an acute methamphetamine administration. It was proven that the developed assay could be applied to both a simultaneous analysis of all four substrates (dopamine, homovanillic acid, 3-methoxytyramine and 3,4-dihydroxyphenylacetic acid) in microdialysis samples acquired from the rat brain and the monitoring of their slight concentration changes on a picogram level over time following methamphetamine stimulus.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 3,4-Dihydroxyphenylacetic Acid / analysis*
  • 3,4-Dihydroxyphenylacetic Acid / metabolism
  • Animals
  • Chromatography, Liquid / methods*
  • Dopamine / analogs & derivatives*
  • Dopamine / analysis
  • Dopamine / metabolism
  • Drug Stability
  • Female
  • Freeze Drying
  • Homovanillic Acid / analysis*
  • Homovanillic Acid / metabolism
  • Linear Models
  • Methamphetamine / administration & dosage
  • Microdialysis
  • Nucleus Accumbens / chemistry*
  • Nucleus Accumbens / metabolism
  • Rats
  • Rats, Wistar
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Tandem Mass Spectrometry / methods*

Substances

  • 3,4-Dihydroxyphenylacetic Acid
  • Methamphetamine
  • Dopamine
  • Homovanillic Acid