Caveolin-2 is a negative regulator of anti-proliferative function and signaling of transforming growth factor-β in endothelial cells

Am J Physiol Cell Physiol. 2011 Nov;301(5):C1161-74. doi: 10.1152/ajpcell.00486.2010. Epub 2011 Aug 10.

Abstract

Using a combination of wild-type (WT) and caveolin-2 (Cav-2) knockout along with retroviral reexpression approaches, we provide the evidence for the negative role of Cav-2 in regulating anti-proliferative function and signaling of transforming growth factor β (TGF-β) in endothelial cells (ECs). Although, TGF-β had a modest inhibitory effect on WT ECs, it profoundly inhibited proliferation of Cav-2 knockout ECs. To confirm the specificity of the observed difference in response to TGF-β, we have stably reexpressed Cav-2 in Cav-2 knockout ECs using a retroviral approach. Similar to WT ECs, the anti-proliferative effect of TGF-β was dramatically reduced in the Cav-2 reexpressing ECs. The reduced anti-proliferative effect of TGF-β in Cav-2-positive cells was evidenced by three independent proliferation assays: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), cell count, and bromodeoxyuridine incorporation and correlated with a loss of TGF-β-mediated upregulation of cell cycle inhibitor p27 and subsequent reduction of the levels of hyperphosphorylated (inactive) form of the retinoblastoma protein in Cav-2 reexpressing ECs. Mechanistically, Cav-2 inhibits anti-proliferative action of TGF-β by suppressing Alk5-Smad2/3 pathway manifested by reduced magnitude and length of TGF-β-induced Smad2/3 phosphorylation as well as activation of activin receptor-like kinase-5 (Alk5)-Smad2/3 target genes plasminogen activator inhibitor-1 and collagen type I in Cav-2-positive ECs. Expression of Cav-2 does not appear to significantly change targeting of TGF-β receptors I and Smad2/3 to caveolar and lipid raft microdomains as determined by sucrose fractionation gradient. Overall, the negative regulation of TGF-β signaling and function by Cav-2 is independent of Cav-1 expression levels and is not because of changing targeting of Cav-1 protein to plasma membrane lipid raft/caveolar domains.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Caveolin 2 / metabolism*
  • Cell Proliferation / drug effects*
  • Cells, Cultured
  • Collagen Type I / metabolism
  • Endothelial Cells / drug effects
  • Lung / drug effects
  • Lung / metabolism*
  • Membrane Microdomains / metabolism
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Phosphorylation
  • Plasminogen Activator Inhibitor 1 / metabolism
  • Protein Serine-Threonine Kinases / metabolism
  • Receptor, Transforming Growth Factor-beta Type I
  • Receptors, Transforming Growth Factor beta / metabolism
  • Retinoblastoma Protein / metabolism
  • Signal Transduction / drug effects*
  • Smad2 Protein / metabolism
  • Smad3 Protein / metabolism
  • Transforming Growth Factor beta / drug effects*

Substances

  • Cav2 protein, mouse
  • Caveolin 2
  • Collagen Type I
  • Plasminogen Activator Inhibitor 1
  • Receptors, Transforming Growth Factor beta
  • Retinoblastoma Protein
  • Smad2 Protein
  • Smad2 protein, mouse
  • Smad3 Protein
  • Smad3 protein, mouse
  • Transforming Growth Factor beta
  • Protein Serine-Threonine Kinases
  • Receptor, Transforming Growth Factor-beta Type I
  • Tgfbr1 protein, mouse