Reduced infarct size and accumulation of microglia in rats treated with WIN 55,212-2 after neonatal stroke

Neuroscience. 2012 Apr 5:207:307-15. doi: 10.1016/j.neuroscience.2012.01.008. Epub 2012 Jan 12.

Abstract

Cannabinoids have emerged as brain protective agents under neurodegenerative conditions. Many neuroprotective actions of cannabinoids depend on the activation of specific receptors, cannabinoid receptor type 1 (CB1R) and type 2 (CB2R). The aim of the present study was to determine whether the CB2R and CB1R agonist WIN 55,212-2 (WIN) protects neonatal brain against focal cerebral ischemia-reperfusion and whether anti-inflammatory mechanisms play a role in protection. Seven-day-old rats were subjected to 90-min middle cerebral artery occlusion (MCAO), and injured rats were identified by diffusion-weighted MRI during the occlusion. After reperfusion, rats were subcutaneously administered 1 mg/kg of WIN or vehicle twice daily until sacrifice. MCAO led to increased mRNA expression of CB2R (but not CB1R), chemokine receptors (CCR2 and CX3CR1), and cytokines (IL-1β and TNFα), as well as increased protein expression of chemokines MCP-1 and MIP-1α and microglial activation 24 h after MCAO. WIN administration significantly reduced microglial activation at this point and attenuated infarct volume and microglial accumulation and proliferation in the injured cortex 72 h after MCAO. Cumulatively, our results show that the cannabinoid agonist WIN protects against neonatal focal stroke in part due to inhibitory effects on microglia.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Animals, Newborn
  • Benzoxazines / pharmacology*
  • Brain / blood supply
  • Brain / drug effects
  • Brain / pathology
  • Cannabinoid Receptor Modulators / pharmacology*
  • Disease Models, Animal
  • Female
  • Infarction, Middle Cerebral Artery / drug therapy*
  • Infarction, Middle Cerebral Artery / pathology
  • Infarction, Middle Cerebral Artery / physiopathology
  • Microglia / drug effects
  • Microglia / pathology*
  • Morpholines / pharmacology*
  • Naphthalenes / pharmacology*
  • Rats
  • Rats, Sprague-Dawley

Substances

  • Benzoxazines
  • Cannabinoid Receptor Modulators
  • Morpholines
  • Naphthalenes
  • (3R)-((2,3-dihydro-5-methyl-3-((4-morpholinyl)methyl)pyrrolo-(1,2,3-de)-1,4-benzoxazin-6-yl)(1-naphthalenyl))methanone