Ancient coins: cluster analysis applied to find a correlation between corrosion process and burial soil characteristics

Chem Cent J. 2012 May 2;6 Suppl 2(Suppl 2):S9. doi: 10.1186/1752-153X-6-S2-S9.

Abstract

Although it is well known that any material degrades faster when exposed to an aggressive environment as well as that "aggressive" cannot be univocally defined as depending also on the chemical-physical characteristics of material, few researches on the identification of the most significant parameters influencing the corrosion of metallic object are available.A series of ancient coins, coming from the archaeological excavation of Palazzo Valentini (Rome) were collected together with soils, both near and far from them, and then analysed using different analytical techniques looking for a correlation between the corrosion products covering the coins and the chemical-physical soil characteristics. The content of soluble salts in the water-bearing stratum and surfacing in the archaeological site, was also measured.The obtained results stress the influence of alkaline soils on formation of patina. Cerussite, probably due to the circulation of water in layers rich in marble and plaster fragments, was the main corrosion product identified by X-ray Diffraction (XRD). Copper, lead and vanadium were found in soil surrounding coins. By measuring conductivity, pH and soluble salts content of the washing solutions from both coins and soils, we could easily separate coins coming from different stratigraphic units of the site.Data were treated by cluster and multivariate analysis, revealing a correlation between part of the coins and the nearby soil samples.