Serum-free culture of Japanese quail kidney cells. Regulation of vitamin D metabolism

Biochim Biophys Acta. 1979 Nov 1;587(4):495-506. doi: 10.1016/0304-4165(79)90003-5.

Abstract

Cells obtained from male quail kidneys by digestion with collagenase and hyaluronidase were plated and maintained in a chemically defined, serum-free medium. Culture dishes (35 mm) were inoculated with 1.5 . 10(6) cells which became confluent in 5 days. The cells maintained an epithelial-like morphology over the entire culture period. During a 2 h incubation the cells metabolized 25--30% of the 10 nM 25-hydroxyvitamin D-3 (25-OH-D-3) provided. Seven metabolites were chromatographically separated on Sephadex LH-20. Three have been identified as 1 alpha, 25-dihydroxyvitamin D-3 (1,25(OH)2D-3), 24,25-dihydroxyvitamin D-3 (24,25(OH)2D-3) and 1 alpha, 24,25-trihhydroxyvitamin D-3 (1,24,25(OH)3D-3). The activities of the 25-OH-D-3:1 alpha- and 24-hydroxylases increased eight times faster than the cell number in 5 days. Preincubation of the cells with 10 nM 25-OH-D-3 or 1,25(OH)2D-3 decreased 1,25(OH)2D-3 synthesis, and increased both 24,25(OH)2D-3 and metabolite IV synthesis. The decrease in 25-OH-D-3:1 alpha-hydroxylase activity required a 2 h preincubation with 25-OH-D-3, while stimulation of 25-OH-D-3:24-hydroxylase activity and metabolite IV production required a 6 h preincubation. Incubations of cells for 1 h with parathyroid hormone resulted in a 30-fold increase in cyclic AMP in the medium. A 6 h preincubation with parathyroid hormone decreased 24,25(OH)2D-3) synthesis 50% relative to control cells. These results demonstrate the amenability of this system for studying the regulation of 25-OH-D-3 metabolism, as well as its use for other in vitro studies on renal cell function in a chemically defined culture system.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cells, Cultured
  • Coturnix
  • Cyclic AMP / metabolism
  • Hydroxycholecalciferols / metabolism
  • Hydroxylation
  • Kidney / cytology
  • Kidney / metabolism*
  • Male
  • Parathyroid Hormone / pharmacology
  • Vitamin D / metabolism*

Substances

  • Hydroxycholecalciferols
  • Parathyroid Hormone
  • Vitamin D
  • Cyclic AMP