Pinnatoxin G is responsible for atypical toxicity in mussels (Mytilus galloprovincialis) and clams (Venerupis decussata) from Ingril, a French Mediterranean lagoon

Toxicon. 2013 Dec 1:75:16-26. doi: 10.1016/j.toxicon.2013.05.001. Epub 2013 May 30.

Abstract

Following a review of official control data on shellfish in France, Ingril Lagoon had been identified as a site where positive mouse bioassays for lipophilic toxins had been repeatedly observed. These unexplained mouse bioassays, also called atypical toxicity, coincided with an absence of regulated toxins and rapid death times in mice observed in the assay. The present study describes pinnatoxin G as the main compound responsible for the toxicity observed using the mouse bioassay for lipophilic toxins. Using a well-characterised standard for pinnatoxin G, LC-MS/MS analysis of mussel samples collected from 2009 to 2012 revealed regular occurrences of pinnatoxin G at levels sufficient to account for the toxicity in the mouse bioassays. Baseline levels of pinnatoxin G from May to October usually exceeded 40 μg kg(-1) in whole flesh, with a maximum in September 2010 of around 1200 μg kg(-1). These concentrations were much greater than those at the other 10 sites selected for vigilance testing, where concentrations did not exceed 10 μg kg(-1) in a 3-month survey from April to July 2010, and where rapid mouse deaths were not typically observed. Mussels were always more contaminated than clams, confirming that mussel is a good sentinel species for pinnatoxins. Profiles in mussels and clams were similar, with the concentration of pinnatoxin A less than 2% that of pinnatoxin G, and pteriatoxins were only present in non-quantifiable traces. Esters of pinnatoxin G could not be detected by analysis of extracts before and after alkaline hydrolysis. Analysis with a receptor-binding assay showed that natural pinnatoxin G was similarly active on the nicotinic acetylcholine receptor as chemically synthesized pinnatoxin G. Culture of Vulcanodinium rugosum, previously isolated from Ingril lagoon, confirmed that this alga is a pinnatoxin G producer (4.7 pg cell(-1)). Absence of this organism from the water column during prolonged periods of shellfish contamination and the dominance of non-motile life stages of V. rugosum both suggest that further studies will be required to fully describe the ecology of this organism and the accumulation of pinnatoxins in shellfish.

Keywords: Accumulation; Cyclic imines; Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS); Shellfish toxin; Unexplained mouse toxicity.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alkaloids / chemistry
  • Alkaloids / pharmacokinetics
  • Alkaloids / toxicity*
  • Animals
  • Biological Assay
  • Bivalvia / drug effects*
  • Chromatography, High Pressure Liquid
  • Chromatography, Liquid
  • Dinoflagellida / metabolism
  • France
  • Geologic Sediments / chemistry
  • Marine Toxins / chemistry
  • Marine Toxins / pharmacokinetics
  • Marine Toxins / toxicity*
  • Mice
  • Mytilus / drug effects*
  • Spiro Compounds / chemistry
  • Spiro Compounds / pharmacokinetics
  • Spiro Compounds / toxicity*
  • Tandem Mass Spectrometry
  • Tissue Distribution

Substances

  • Alkaloids
  • Marine Toxins
  • Spiro Compounds
  • pinnatoxin G