Hemoglobins of the Lucina pectinata/bacteria symbiosis. I. Molecular properties, kinetics and equilibria of reactions with ligands

J Biol Chem. 1990 Sep 25;265(27):16043-53.

Abstract

Three hemoglobins have been isolated from the symbiont-harboring gill of the bivalve mollusc Lucina pectinata. Oxyhemoglobin I (Hb I), which may be called sulfide-reactive hemoglobin, reacts with hydrogen sulfide to form ferric hemoglobin sulfide in a reaction that may proceed by nucleophilic displacement of bound superoxide anion by hydrosulfide anion. Hemoglobins II and II, called oxygen-reactive hemoglobins, remain oxygenated in the presence of hydrogen sulfide. Hemoglobin I is monomeric; Hb II and Hb III self-associate in a concentration-dependent manner and form a tetramer when mixed. Oxygen binding is not cooperative. Oxygen affinities are all nearly the same, P50 = 0.1 to 0.2 Torr, and are independent of pH. Combination of Hb I with oxygen is fast; k'on = (estimated) 100-200 x 10(6) M-1 s-1. Combination of Hb II and Hb III with oxygen is slow: k'on = 0.4 and 0.3 x 10(6) M-1 s-1, respectively. Dissociation of oxygen from Hb I is fast relative to myoglobin: koff = 61 s-1. Dissociation from Hb II and Hb III is slow: koff = 0.11 and 0.08 s-1, respectively. These large differences in rates of reaction together with differences in the reactions of carbon monoxide suggest differences in configuration of the distal heme pocket. The fast reactions of Hb I are comparable to those of hemoglobins that lack distal histidine residues. Slow dissociation of oxygen from Hb II and Hb III suggest that a distal residue may interact strongly with the bound ligand. We infer that Hb I may facilitate delivery of hydrogen sulfide to the chemoautotrophic bacterial symbiont and Hb II and Hb III may facilitate delivery of oxygen. The midpoint oxidation-reduction potential of the ferrous/ferric couple of Hb I, 103 +/- 8 mV, was independent of pH. Potentials of Hb II and Hb III were pH-dependent. At neutral pH all three hemoglobins have similar midpoint potentials. The rate constant for combination of ferric Hb I with hydrogen sulfide increases 3000-fold from pH 10.5 to 5.5, with apparent pK 7.0, suggesting that undissociated hydrogen sulfide is the attacking ligand. At the acid limit combination of ferric Hb I with hydrogen sulfide, k'on = 2.3 x 10(5) M-1 s-1, is 40-fold faster than combination with ferric Hb II or myoglobin.(ABSTRACT TRUNCATED AT 400 WORDS)

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acids / analysis
  • Animals
  • Bacteria / metabolism
  • Bivalvia / metabolism*
  • Carboxyhemoglobin / metabolism
  • Chromatography, Gel
  • Chromatography, Ion Exchange
  • Electrophoresis, Polyacrylamide Gel
  • Heme / metabolism
  • Hemoglobins / isolation & purification
  • Hemoglobins / metabolism*
  • Kinetics
  • Ligands
  • Macromolecular Substances
  • Molecular Weight
  • Oxidation-Reduction
  • Oxyhemoglobins / metabolism
  • Protein Binding
  • Spectrophotometry
  • Sulfides / metabolism
  • Symbiosis

Substances

  • Amino Acids
  • Hemoglobins
  • Ligands
  • Macromolecular Substances
  • Oxyhemoglobins
  • Sulfides
  • Heme
  • Carboxyhemoglobin