Measurement of the internal adaptation of resin composites using micro-CT and its correlation with polymerization shrinkage

Oper Dent. 2014 Mar-Apr;39(2):E57-70. doi: 10.2341/12-378-L. Epub 2013 Oct 10.

Abstract

In the present study, the internal adaptation of dentin-composite interfaces with various resin composite materials under conditions of thermomechanical loading was analyzed nondestructively using micro-computed tomography (micro-CT), and these results were compared with analyses of microgaps after sectioning. Additionally, the correlation of internal adaptation with polymerization shrinkage strain and stress was evaluated. Four nonflowable resins, Gradia Direct (GD), Filtek P90 (P9), Filtek Z350 (Z3), and Charisma (CH), and two flowable resins, SDR (SD) and Tetric N-Flow (TF) were used. First, the polymerization shrinkage strain and stress were measured. Then, Class I cavities were prepared in 48 premolars. They were divided randomly into six groups, and the cavities were filled with composites using XP bond. To evaluate the internal adaptation, tooth specimens were immersed in a 25% silver nitrate solution, and micro-CT analysis was performed before and after thermomechanical loading. The silver nitrate penetration (%SP) was measured. After buccolingual sectioning and rhodamine penetration of the specimen, the rhodamine penetration (%RP) was measured using a stereo-microscope. One-way analysis of variance was then used to compare the polymerization shrinkage strain, stress, %SP, and %RP among the groups at a 95% confidence level. A paired t-test was used to compare the %SP before and after thermomechanical loading. Pearson correlation analysis was used to compare the correlation between polymerization shrinkage strain/stress and %SP or %RP to a 95% confidence level. Evaluation of the polymerization shrinkage strain demonstrated that P9 < Z3 ≤ GD < CH ≤ SD < TF (p<0.05); similarly, evaluation of the polymerization shrinkage stress showed that P9 ≤ GD ≤ Z3 ≤ CH ≤ SD < TF (p<0.05). The %SP showed that P9 ≤ GD ≤ Z3 < CH ≤ SD < TF (p<0.05) before loading and that P9 ≤ GD ≤ Z3 ≤ CH ≤ SD < TF (p<0.05) after loading. There was a significant difference between the before-loading and after-loading measurements in all groups (p<0.05). Additionally, there was a positive correlation between the %SP and the %RP (r=0.810, p<0.001). Conclusively, the polymerization shrinkage stress and strain were found to be closely related to the internal adaptation of the resin composite restorations. The newly proposed model for the evaluation of internal adaptation using micro-CT and silver nitrate may provide a new measurement for evaluating the internal adaptation of restorations in a nondestructive way.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Composite Resins / standards
  • Composite Resins / therapeutic use*
  • Dental Restoration, Permanent / methods
  • Dental Restoration, Permanent / standards
  • Dental Stress Analysis
  • Humans
  • Polymerization
  • X-Ray Microtomography

Substances

  • Charisma composite resin
  • Composite Resins
  • Gradia
  • filtek P90
  • filtek Z350
  • tetric flow composite resin