The emerging genomic landscape of endometrial cancer

Clin Chem. 2014 Jan;60(1):98-110. doi: 10.1373/clinchem.2013.205740. Epub 2013 Oct 29.

Abstract

Background: Endometrial cancer is responsible for approximately 74 000 deaths annually among women worldwide. It is a heterogeneous disease comprising multiple histologic subtypes. In the US, the majority of deaths from endometrial carcinoma are attributed to the serous and endometrioid subtypes. An understanding of the fundamental genomic alterations that drive serous and endometrioid endometrial carcinomas lays the foundation for the identification of molecular markers that could improve the clinical management of patients presenting with these tumors.

Content: We review the current state of knowledge regarding somatic genomic alterations that occur in serous and endometrioid endometrial tumors. We present this knowledge in a historical context by reviewing the genomic alterations that studies of individual genes and proteins have identified over the past 2 decades or so. We then review very recent comprehensive and systematic surveys of genomic, exomic, transcriptomic, epigenomic, and proteomic alterations in serous and endometrioid endometrial carcinomas.

Summary: The recent mapping of the genomic landscape of serous and endometrioid endometrial carcinomas has produced the first comprehensive molecular classification of these tumors, which has distinguished 4 molecular subgroups: a POLE [polymerase (DNA directed), ε, catalytic subunit] ultramutated subgroup, a hypermutated/microsatellite-unstable subgroup, a copy number-low/microsatellite-stable subgroup, and a copy number-high subgroup. This molecular classification may ultimately serve to refine the diagnosis and treatment of women with endometrioid and serous endometrial tumors.

Publication types

  • Research Support, N.I.H., Intramural
  • Review

MeSH terms

  • Endometrial Neoplasms / genetics*
  • Female
  • Genome, Human / genetics*
  • Genomics*
  • Humans