Mixed transition-metal oxides: design, synthesis, and energy-related applications

Angew Chem Int Ed Engl. 2014 Feb 3;53(6):1488-504. doi: 10.1002/anie.201303971. Epub 2014 Jan 2.

Abstract

A promising family of mixed transition-metal oxides (MTMOs) (designated as Ax B3-x O4 ; A, B=Co, Ni, Zn, Mn, Fe, etc.) with stoichiometric or even non-stoichiometric compositions, typically in a spinel structure, has recently attracted increasing research interest worldwide. Benefiting from their remarkable electrochemical properties, these MTMOs will play significant roles for low-cost and environmentally friendly energy storage/conversion technologies. In this Review, we summarize recent research advances in the rational design and efficient synthesis of MTMOs with controlled shapes, sizes, compositions, and micro-/nanostructures, along with their applications as electrode materials for lithium-ion batteries and electrochemical capacitors, and efficient electrocatalysts for the oxygen reduction reaction in metal-air batteries and fuel cells. Some future trends and prospects to further develop advanced MTMOs for next-generation electrochemical energy storage/conversion systems are also presented.

Keywords: energy storage/conversion; lithium-ion batteries; mixed metal oxides; oxygen reduction; supercapacitors.