Plant DNA barcoding: from gene to genome

Biol Rev Camb Philos Soc. 2015 Feb;90(1):157-66. doi: 10.1111/brv.12104. Epub 2014 Mar 26.

Abstract

DNA barcoding is currently a widely used and effective tool that enables rapid and accurate identification of plant species; however, none of the available loci work across all species. Because single-locus DNA barcodes lack adequate variations in closely related taxa, recent barcoding studies have placed high emphasis on the use of whole-chloroplast genome sequences which are now more readily available as a consequence of improving sequencing technologies. While chloroplast genome sequencing can already deliver a reliable barcode for accurate plant identification it is not yet resource-effective and does not yet offer the speed of analysis provided by single-locus barcodes to unspecialized laboratory facilities. Here, we review the development of candidate barcodes and discuss the feasibility of using the chloroplast genome as a super-barcode. We advocate a new approach for DNA barcoding that, for selected groups of taxa, combines the best use of single-locus barcodes and super-barcodes for efficient plant identification. Specific barcodes might enhance our ability to distinguish closely related plants at the species and population levels.

Keywords: plastid-sequencing; single-locus barcode; specific barcode; super-barcode; universal.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • DNA Barcoding, Taxonomic*
  • DNA, Plant / genetics*
  • Gene Expression Regulation, Plant
  • Genome, Plant*
  • Plants / genetics*

Substances

  • DNA, Plant