Genomic and metabolic comparison with Dickeya dadantii 3937 reveals the emerging Dickeya solani potato pathogen to display distinctive metabolic activities and T5SS/T6SS-related toxin repertoire

BMC Genomics. 2014 Apr 15:15:283. doi: 10.1186/1471-2164-15-283.

Abstract

Background: The pectinolytic enterobacteria of the Pectobacterium and Dickeya genera are causative agents of maceration-associated diseases affecting a wide variety of crops and ornamentals. For the past decade, the emergence of a novel species D. solani was observed in potato fields in Europe and the Mediterranean basin. The purpose of this study is to search by comparative genomics the genetic traits that could be distinctive to other Dickeya species and be involved in D. solani adaptation to the potato plant host.

Results: D. solani 3337 exhibits a 4.9 Mb circular genome that is characterized by a low content in mobile elements with the identification of only two full length insertion sequences. A genomic comparison with the deeply-annotated model D. dadantii 3937 strain was performed. While a large majority of Dickeya virulence genes are shared by both strains, a few hundreds genes of D. solani 3337, mostly regrouped in 25 genomic regions, are distinctive to D. dadantii 3937. These genomic regions are present in the other available draft genomes of D. solani strains and interestingly some of them were not found in the sequenced genomes of the other Dickeya species. These genomic regions regroup metabolic genes and are often accompanied by genes involved in transport systems. A metabolic analysis correlated some metabolic genes with distinctive functional traits of both D. solani 3337 and D. dadantii 3937. Three identified D. solani genomic regions also regroup NRPS/PKS encoding genes. In addition, D. solani encodes a distinctive arsenal of T5SS and T6SS-related toxin-antitoxin systems. These genes may contribute to bacteria-bacteria interactions and to the fitness of D. solani to the plant environment.

Conclusions: This study highlights the genomic specific traits of the emerging pathogen D. solani and will provide the basis for studying those that are involved in the successful adaptation of this emerging pathogen to the potato plant host.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacterial Toxins / genetics*
  • Bacterial Toxins / metabolism
  • Clustered Regularly Interspaced Short Palindromic Repeats
  • Computational Biology
  • DNA Transposable Elements
  • Enterobacteriaceae / genetics*
  • Enterobacteriaceae / metabolism*
  • Gene Expression Regulation, Bacterial
  • Gene Order
  • Gene Regulatory Networks
  • Genes, Bacterial
  • Genetic Variation
  • Genome, Bacterial
  • Genomic Islands
  • Genomics*
  • Host-Pathogen Interactions
  • Metabolomics*
  • Plant Diseases / microbiology
  • Solanum tuberosum / microbiology*
  • Virulence / genetics
  • Virulence Factors / genetics

Substances

  • Bacterial Toxins
  • DNA Transposable Elements
  • Virulence Factors