An Elegant Algorithm for the Construction of Suffix Arrays

J Discrete Algorithms (Amst). 2014 Jul 1:27:21-28. doi: 10.1016/j.jda.2014.03.001.

Abstract

The suffix array is a data structure that finds numerous applications in string processing problems for both linguistic texts and biological data. It has been introduced as a memory efficient alternative for suffix trees. The suffix array consists of the sorted suffixes of a string. There are several linear time suffix array construction algorithms (SACAs) known in the literature. However, one of the fastest algorithms in practice has a worst case run time of O(n2). The problem of designing practically and theoretically efficient techniques remains open. In this paper we present an elegant algorithm for suffix array construction which takes linear time with high probability; the probability is on the space of all possible inputs. Our algorithm is one of the simplest of the known SACAs and it opens up a new dimension of suffix array construction that has not been explored until now. Our algorithm is easily parallelizable. We offer parallel implementations on various parallel models of computing. We prove a lemma on the ℓ-mers of a random string which might find independent applications. We also present another algorithm that utilizes the above algorithm. This algorithm is called RadixSA and has a worst case run time of O(n log n). RadixSA introduces an idea that may find independent applications as a speedup technique for other SACAs. An empirical comparison of RadixSA with other algorithms on various datasets reveals that our algorithm is one of the fastest algorithms to date. The C++ source code is freely available at http://www.engr.uconn.edu/~man09004/radixSA.zip.

Keywords: high probability bounds; parallel algorithm; suffix array construction algorithm.