Dissemination of the transmissible quinolone-resistance gene qnrS1 by IncX plasmids in Nigeria

PLoS One. 2014 Oct 23;9(10):e110279. doi: 10.1371/journal.pone.0110279. eCollection 2014.

Abstract

The plasmid-encoded quinolone resistance gene qnrS1 was recently found to be commonly associated with ciprofloxacin resistance in Nigeria. We mapped the qnrS1 gene from an Escherichia coli isolate obtained in Nigeria to a 43.5 Kb IncX2 plasmid. The plasmid, pEBG1, was sufficient to confer ciprofloxacin non-susceptibility, as well as tetracycline and trimethoprim resistance, on E. coli K-12. Deletion analysis confirmed that qnrS1 accounted for all the ciprofloxacin non-suceptibility conferred by pEBG1 and tetracycline and trimethoprim resistance could be attributed to tetAR and dfrA14 genes respectively. While it contained a complete IncX conjugation system, pEBG1 was not self-transmissible likely due to an IS3 element inserted between the pilX5 and pilX6 genes. The plasmid was however efficiently mobilizable. pEBG1 was most similar to another qnrS1-bearing IncX2 plasmid from Nigeria, but both plasmids acquired qnrS1 independently and differ in their content of other resistance genes. Screening qnrS1-positive isolates from other individuals in Nigeria revealed that they carried neither pEBG1 nor pNGX2-QnrS1 but that IncX plasmids were prevalent. This study demonstrates that the IncX backbone is a flexible platform that has contributed to qnrS1 dissemination in Nigeria.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Chromosome Mapping
  • Drug Resistance, Bacterial / drug effects
  • Drug Resistance, Bacterial / genetics*
  • Escherichia coli / drug effects
  • Escherichia coli / genetics*
  • Escherichia coli / isolation & purification
  • Genes, Bacterial*
  • Likelihood Functions
  • Microbial Sensitivity Tests
  • Molecular Sequence Data
  • Nigeria
  • Phylogeny
  • Plasmids / genetics*
  • Quinolones / pharmacology*

Substances

  • Quinolones

Associated data

  • GENBANK/KF738053

Grants and funding

This work was supported by a Branco Weiss Fellowship to INO from the Society-in-Science, ETHZ, Zürich and intramural funding from Haverford College. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.