Loss of fatty acid synthase suppresses the malignant phenotype of colorectal cancer cells by down-regulating energy metabolism and mTOR signaling pathway

J Cancer Res Clin Oncol. 2016 Jan;142(1):59-72. doi: 10.1007/s00432-015-2000-8. Epub 2015 Jun 25.

Abstract

Purpose: Altered cellular metabolism has received increased attention as an important hallmark of cancer. Activation of FASN has been found to be involved in many human tumors. Despite extensive research in FASN function on cancer, the underlying mechanism is not entirely understood yet.

Methods: Cerulenin was used to suppress the FASN expression in human colorectal cancer cell lines (HT29 and LoVo). Expression of PI3K, Akt, p-Akt, mTOR, p-mTOR, FASN, and AZGP1 was measured using western blotting and qPCR. ATP and lactic acid were assessed to investigate the activation of energy metabolism. Cell cytotoxicity assay was studied by cell counting kit-8 assay. The capacity of cell proliferation and migration was investigated by clonogenic and invasion assay. Analysis of apoptosis and the cell cycle was detected by flow cytometry.

Results: We found that the expression of FASN was down-regulated, while the expression of PI3K, p-Akt, p-mTOR, and AZGP1 was down-regulated in HT29 and LoVo cells treated with FASN inhibitor. Proliferation was reduced in FASN inhibitor-treated cells, which is consistent with an increased apoptosis rate. Furthermore, the migration of FASN inhibitor-treated cells was decreased and the content of ATP and lactic acid was also dropped.

Conclusion: These findings suggest that inhibited FASN suppresses the malignant phenotype of colorectal cancer cells by down-regulating energy metabolism and mTOR signaling pathway. The results have paved the way to understand the relations of FASN, mTOR signaling pathway, and energy metabolism in colorectal cancer cells.

Keywords: Colorectal cancer; Energy metabolism; FASN; mTOR.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Apoptosis
  • Blotting, Western
  • Cell Adhesion
  • Cell Cycle
  • Cell Proliferation
  • Colorectal Neoplasms / genetics
  • Colorectal Neoplasms / metabolism
  • Colorectal Neoplasms / pathology*
  • Energy Metabolism*
  • Fatty Acid Synthase, Type I / antagonists & inhibitors*
  • Fatty Acid Synthase, Type I / genetics
  • Fatty Acid Synthase, Type I / metabolism
  • Flow Cytometry
  • Gene Expression Regulation, Neoplastic*
  • Humans
  • Phenotype
  • Phosphatidylinositol 3-Kinases / genetics
  • Phosphatidylinositol 3-Kinases / metabolism
  • Phosphoinositide-3 Kinase Inhibitors*
  • Proto-Oncogene Proteins c-akt / antagonists & inhibitors*
  • Proto-Oncogene Proteins c-akt / genetics
  • Proto-Oncogene Proteins c-akt / metabolism
  • RNA, Messenger / genetics
  • Real-Time Polymerase Chain Reaction
  • Receptor, ErbB-2 / antagonists & inhibitors
  • Receptor, ErbB-2 / genetics
  • Receptor, ErbB-2 / metabolism
  • Reverse Transcriptase Polymerase Chain Reaction
  • Signal Transduction
  • TOR Serine-Threonine Kinases / antagonists & inhibitors*
  • TOR Serine-Threonine Kinases / genetics
  • TOR Serine-Threonine Kinases / metabolism
  • Tumor Cells, Cultured

Substances

  • Phosphoinositide-3 Kinase Inhibitors
  • RNA, Messenger
  • FASN protein, human
  • Fatty Acid Synthase, Type I
  • MTOR protein, human
  • Receptor, ErbB-2
  • Proto-Oncogene Proteins c-akt
  • TOR Serine-Threonine Kinases