Sensing analysis based on plasmon induced transparency in nanocavity-coupled waveguide

Opt Express. 2015 Aug 10;23(16):20313-20. doi: 10.1364/OE.23.020313.

Abstract

We report the sensing characteristic based on plasmon induced transparency in nanocavity-coupled metal-dielectric-metal waveguide analytically and numerically. A simple model for the sensing nature is first presented by the coupled mode theory. We show that the coupling strength and the resonance detuning play important roles in optimizing the sensing performance and the detection limit of sensor, and an interesting double-peak sensing is also obtained in such plasmonic sensor. In addition, the specific refractive index width of the dielectric environment is discovered in slow-light sensing and the relevant sensitivity can be enhanced. The proposed model and findings provide guidance for fundamental research of the integrated plasmonic nanosensor applications and designs.