AMIGO2, a novel membrane anchor of PDK1, controls cell survival and angiogenesis via Akt activation

J Cell Biol. 2015 Nov 9;211(3):619-37. doi: 10.1083/jcb.201503113.

Abstract

The phosphoinositide 3-kinase-Akt signaling pathway is essential to many biological processes, including cell proliferation, survival, metabolism, and angiogenesis, under pathophysiological conditions. Although 3-phosphoinositide-dependent kinase 1 (PDK1) is a primary activator of Akt at the plasma membrane, the optimal activation mechanism remains unclear. We report that adhesion molecule with IgG-like domain 2 (AMIGO2) is a novel scaffold protein that regulates PDK1 membrane localization and Akt activation. Loss of AMIGO2 in endothelial cells (ECs) led to apoptosis and inhibition of angiogenesis with Akt inactivation. Amino acid residues 465-474 in AMIGO2 directly bind to the PDK1 pleckstrin homology domain. A synthetic peptide containing the AMIGO2 465-474 residues abrogated the AMIGO2-PDK1 interaction and Akt activation. Moreover, it effectively suppressed pathological angiogenesis in murine tumor and oxygen-induced retinopathy models. These results demonstrate that AMIGO2 is an important regulator of the PDK1-Akt pathway in ECs and suggest that interference of the PDK1-AMIGO2 interaction might be a novel pharmaceutical target for designing an Akt pathway inhibitor.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acids / metabolism
  • Animals
  • Apoptosis / physiology
  • Cell Membrane / metabolism*
  • Cell Survival / physiology*
  • Endothelial Cells / metabolism
  • Human Umbilical Vein Endothelial Cells
  • Humans
  • Mice
  • Neovascularization, Pathologic / metabolism*
  • Nerve Tissue Proteins / metabolism*
  • Phosphatidylinositol 3-Kinases / metabolism
  • Protein Serine-Threonine Kinases / metabolism*
  • Proto-Oncogene Proteins c-akt / metabolism*
  • Pyruvate Dehydrogenase Acetyl-Transferring Kinase
  • Signal Transduction / physiology

Substances

  • AMIGO2 protein, human
  • Amino Acids
  • Nerve Tissue Proteins
  • PDK1 protein, human
  • Pdk1 protein, mouse
  • Pyruvate Dehydrogenase Acetyl-Transferring Kinase
  • Protein Serine-Threonine Kinases
  • Proto-Oncogene Proteins c-akt