Characterization of Conformation and Locations of C-F Bonds in Graphene Derivative by Polarized ATR-FTIR

Anal Chem. 2016 Apr 5;88(7):3926-34. doi: 10.1021/acs.analchem.6b00115. Epub 2016 Mar 18.

Abstract

It is still a challenge to explore the orientation and location of chemical groups in the two-dimensional derivative of graphene. In this study, polarized attenuated total reflectance Fourier transform infrared spectroscopy (polarized ATR-FTIR) was employed to investigate the orientation and location of C-F groups in the corresponding graphene derivative sheets, which facilitates building a relationship between the bonding nature and fine structure. There were two types of C-F bonding, (C-F)I and (C-F)II, in fluorinated graphene sheets. It was found that (C-F)II bonds were linked at the coplanar carbon atoms in the weakly fluorinated region (CxF, x ≥ 2), whereas the (C-F)I bonds cluster at the strongly deformed carbon framework with a F/C ratio of about 1. The thermostability of (C-F)II is lower than that of (C-F)I bonds. This is because the coplanar structure of the weakly fluorinated region tends to transform to the planar aromatic ring with the breaking of the C-F bond as compared with the strong fluorinated nonplanar region.

Publication types

  • Research Support, Non-U.S. Gov't