The Effect of Different High-Intensity Periodization Models on Endurance Adaptations

Med Sci Sports Exerc. 2016 Nov;48(11):2165-2174. doi: 10.1249/MSS.0000000000001007.

Abstract

Purpose: This study aimed to compare the effects of three different high-intensity training (HIT) models, balanced for total load but differing in training plan progression, on endurance adaptations.

Methods: Sixty-three cyclists (peak oxygen uptake (V˙O2peak) 61.3 ± 5.8 mL·kg·min) were randomized to three training groups and instructed to follow a 12-wk training program consisting of 24 interval sessions, a high volume of low-intensity training, and laboratory testing. The increasing HIT group (n = 23) performed interval training as 4 × 16 min in weeks 1-4, 4 × 8 min in weeks 5-8, and 4 × 4 min in weeks 9-12. The decreasing HIT group (n = 20) performed interval sessions in the opposite mesocycle order as the increasing HIT group, and the mixed HIT group (n = 20) performed the interval prescriptions in a mixed distribution in all mesocycles. Interval sessions were prescribed as maximal session efforts and executed at mean values 4.7, 9.2, and 12.7 mmol·L blood lactate in 4 × 16-, 4 × 8-, and 4 × 4-min sessions, respectively (P < 0.001). Pre- and postintervention, cyclists were tested for mean power during a 40-min all-out trial, peak power output during incremental testing to exhaustion, V˙O2peak, and power at 4 mmol·L lactate.

Results: All groups improved 5%-10% in mean power during a 40-min all-out trial, peak power output, and V˙O2peak postintervention (P < 0.05), but no adaptation differences emerged among the three training groups (P > 0.05). Further, an individual response analysis indicated similar likelihood of large, moderate, or nonresponses, respectively, in response to each training group (P > 0.05).

Conclusions: This study suggests that organizing different interval sessions in a specific periodized mesocycle order or in a mixed distribution during a 12-wk training period has little or no effect on training adaptation when the overall training load is the same.

Publication types

  • Multicenter Study
  • Randomized Controlled Trial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptation, Physiological*
  • Bicycling / physiology
  • Body Mass Index
  • Exercise Test
  • Humans
  • Oxygen Consumption / physiology
  • Physical Conditioning, Human / methods*
  • Physical Endurance / physiology*
  • Time Factors