Novel Circular Single-Stranded DNA Viruses among an Asteroid, Echinoid and Holothurian (Phylum: Echinodermata)

PLoS One. 2016 Nov 17;11(11):e0166093. doi: 10.1371/journal.pone.0166093. eCollection 2016.

Abstract

Echinoderms are prone to large population fluctuations that can be mediated by pervasive disease events. For the majority of echinoderm disease events the causative pathogen is unknown. Viruses have only recently been explored as potential pathogens using culture-independent techniques though little information currently exists on echinoderm viruses. In this study, ten circular ssDNA viruses were discovered in tissues among an asteroid (Asterias forbesi), an echinoid (Strongylocentrotus droebachiensis) and a holothurian (Parastichopus californicus) using viral metagenomics. Genome architecture and sequence similarity place these viruses among the rapidly expanding circular rep-encoding single stranded (CRESS) DNA viral group. Multiple genomes from the same tissue were no more similar in sequence identity to each other than when compared to other known CRESS DNA viruses. The results from this study are the first to describe a virus from a holothurian and continue to show the ubiquity of these viruses among aquatic invertebrates.

MeSH terms

  • Animals
  • Computational Biology / methods
  • DNA Viruses / classification
  • DNA Viruses / genetics*
  • DNA, Circular*
  • DNA, Viral*
  • Echinodermata / virology*
  • Genes, Viral
  • Genome, Viral
  • Metagenome
  • Metagenomics / methods
  • Sequence Analysis, DNA

Substances

  • DNA, Circular
  • DNA, Viral

Grants and funding

This work was funded by National Science Foundation OCE Division of Ocean Sciences (award number, 1537 111 and 1356964).