Promise and peril in nanomedicine: the challenges and needs for integrated systems biology approaches to define health risk

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2018 Jan;10(1):e1465. doi: 10.1002/wnan.1465. Epub 2017 Mar 15.

Abstract

In the 1966s visionary film 'Fantastic Voyage' a submarine crew was shrunk to 100 nm in size and injected into the body of an injured scientist to repair his damaged brain. The movie (written by Harry Kleiner; directed by Richard Fleischer; novel by Isaac Asimov) drew attention to the potential power of engineered nanoscale structures and devices to construct, monitor, control, treat, and repair individual cells. Even more interesting was the fact that the film elegantly noted that the structure had to be miniaturized to a size that is not detected by the body's immune surveillance system, and highlighted the many physiological barriers that are encountered on the submarine's long journey to the target. Although the concept of miniaturizing humans remains an element of science fiction, targeted drug delivery through nanobots to treat diseases such as cancer is now a reality. The ability of nanobots to evade immune surveillance is one of the most attractive features of nanoscale materials that are exploited in the field of medicine for molecular diagnostics, targeted drug delivery, and therapy of diseases. This article will provide a concise opinion on the state-of-the-art, the challenges, and the use of systems biology-another equally revolutionary field of science-to assess the unique health hazards of nanomaterial exposures. WIREs Nanomed Nanobiotechnol 2018, 10:e1465. doi: 10.1002/wnan.1465 This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.

Publication types

  • Review

MeSH terms

  • Health*
  • Humans
  • Nanomedicine*
  • Nanostructures / toxicity
  • Risk Factors
  • Systems Biology*
  • Toxicity Tests